多模态注意机制的属性-图像相似性度量

Ali Salehi Najafabadi, A. Ghomsheh
{"title":"多模态注意机制的属性-图像相似性度量","authors":"Ali Salehi Najafabadi, A. Ghomsheh","doi":"10.1109/CSICC52343.2021.9420626","DOIUrl":null,"url":null,"abstract":"Multimodal attention mechanisms in computer vision applications enable rich feature extraction by attending to specific image regions, highlighted through a second mode of data regarded as auxiliary information. The correspondence between image regions and auxiliary data can be defined as the similarity between parts of the two modes. In this paper, we propose a similarity measure that maximizes the posterior for matching high-level object attributes with image regions. In contrast to previous methods, we rely on attribute space rather than textual descriptions. We evaluate our results on the CUB dataset. The results show that the proposed method better minimizes the similarity loss function compared to the text-image similarity measurement.","PeriodicalId":374593,"journal":{"name":"2021 26th International Computer Conference, Computer Society of Iran (CSICC)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Attribute-Image Similarity Measure for Multimodal Attention Mechanism\",\"authors\":\"Ali Salehi Najafabadi, A. Ghomsheh\",\"doi\":\"10.1109/CSICC52343.2021.9420626\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multimodal attention mechanisms in computer vision applications enable rich feature extraction by attending to specific image regions, highlighted through a second mode of data regarded as auxiliary information. The correspondence between image regions and auxiliary data can be defined as the similarity between parts of the two modes. In this paper, we propose a similarity measure that maximizes the posterior for matching high-level object attributes with image regions. In contrast to previous methods, we rely on attribute space rather than textual descriptions. We evaluate our results on the CUB dataset. The results show that the proposed method better minimizes the similarity loss function compared to the text-image similarity measurement.\",\"PeriodicalId\":374593,\"journal\":{\"name\":\"2021 26th International Computer Conference, Computer Society of Iran (CSICC)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 26th International Computer Conference, Computer Society of Iran (CSICC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSICC52343.2021.9420626\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 26th International Computer Conference, Computer Society of Iran (CSICC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSICC52343.2021.9420626","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

计算机视觉应用中的多模态注意机制通过关注特定的图像区域来实现丰富的特征提取,通过第二种被视为辅助信息的数据模式来突出。图像区域与辅助数据之间的对应关系可以定义为两种模式部分的相似度。在本文中,我们提出了一种相似性度量,该度量最大化了高阶对象属性与图像区域匹配的后验。与以前的方法相比,我们依赖于属性空间而不是文本描述。我们在CUB数据集上评估我们的结果。结果表明,与文本图像相似度度量相比,该方法能更好地减小相似度损失函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Attribute-Image Similarity Measure for Multimodal Attention Mechanism
Multimodal attention mechanisms in computer vision applications enable rich feature extraction by attending to specific image regions, highlighted through a second mode of data regarded as auxiliary information. The correspondence between image regions and auxiliary data can be defined as the similarity between parts of the two modes. In this paper, we propose a similarity measure that maximizes the posterior for matching high-level object attributes with image regions. In contrast to previous methods, we rely on attribute space rather than textual descriptions. We evaluate our results on the CUB dataset. The results show that the proposed method better minimizes the similarity loss function compared to the text-image similarity measurement.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Transfer Learning for End-to-End ASR to Deal with Low-Resource Problem in Persian Language An SDN-based Firewall for Networks with Varying Security Requirements A Face-Mask Detection Approach based on YOLO Applied for a New Collected Dataset Telegram group recommendation based on users' migration Design of an IoT-based Flood Early Detection System using Machine Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1