基于TCAD模拟的AlGaN/GaN HEMT降解研究

H. Wong, N. Braga, R. Mickevicius, F. Gao, T. Palacios
{"title":"基于TCAD模拟的AlGaN/GaN HEMT降解研究","authors":"H. Wong, N. Braga, R. Mickevicius, F. Gao, T. Palacios","doi":"10.1109/SISPAD.2014.6931572","DOIUrl":null,"url":null,"abstract":"This paper studies, through Three-Dimensional (3D) TCAD simulations, the formation of gate edge pits on the drain-side of GaN high electron mobility transistors (HEMTs) under electrical stress conditions. These pits are believed to be formed due to electrochemical reactions. The simulations predict that holes, which are necessary to initiate the electrochemical reaction but rare under regular HEMT operating conditions, can be generated through trap-assisted, band-to-band tunneling (B2B TAT). The impact of the electrical behavior of the pit (insulator or metal) on the output characteristics (ID-VD) of the HEMTs were also studied. Insulator-type pits degrade the ON-resistance, RD, while metal-types do not. At medium VD, both types of pit degrade ID, which will be recovered at higher VD. But metal-type requires larger VD to restore the ID. As the pits grow, the hole generation rate first increases (more with metal pit), then decrease after the pit-to-width ratio exceeds 20%.","PeriodicalId":101858,"journal":{"name":"2014 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Study of AlGaN/GaN HEMT degradation through TCAD simulations\",\"authors\":\"H. Wong, N. Braga, R. Mickevicius, F. Gao, T. Palacios\",\"doi\":\"10.1109/SISPAD.2014.6931572\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper studies, through Three-Dimensional (3D) TCAD simulations, the formation of gate edge pits on the drain-side of GaN high electron mobility transistors (HEMTs) under electrical stress conditions. These pits are believed to be formed due to electrochemical reactions. The simulations predict that holes, which are necessary to initiate the electrochemical reaction but rare under regular HEMT operating conditions, can be generated through trap-assisted, band-to-band tunneling (B2B TAT). The impact of the electrical behavior of the pit (insulator or metal) on the output characteristics (ID-VD) of the HEMTs were also studied. Insulator-type pits degrade the ON-resistance, RD, while metal-types do not. At medium VD, both types of pit degrade ID, which will be recovered at higher VD. But metal-type requires larger VD to restore the ID. As the pits grow, the hole generation rate first increases (more with metal pit), then decrease after the pit-to-width ratio exceeds 20%.\",\"PeriodicalId\":101858,\"journal\":{\"name\":\"2014 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)\",\"volume\":\"75 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SISPAD.2014.6931572\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SISPAD.2014.6931572","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文通过三维TCAD模拟研究了电应力条件下氮化镓高电子迁移率晶体管漏极侧栅极边缘坑的形成。这些坑被认为是由于电化学反应而形成的。模拟预测,在常规的HEMT操作条件下,可以通过陷阱辅助的能带隧穿(B2B TAT)产生电化学反应所必需的空穴。研究了坑(绝缘子或金属)的电学特性对hemt输出特性(ID-VD)的影响。绝缘体型凹坑会降低导通电阻RD,而金属型凹坑则不会。在中等VD下,这两种凹坑都能降解ID,而在更高VD下则能回收ID。但金属型需要更大的VD来恢复ID。随着凹坑的增大,孔洞产生率先增大(金属凹坑多),当坑宽比超过20%后,孔洞产生率减小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Study of AlGaN/GaN HEMT degradation through TCAD simulations
This paper studies, through Three-Dimensional (3D) TCAD simulations, the formation of gate edge pits on the drain-side of GaN high electron mobility transistors (HEMTs) under electrical stress conditions. These pits are believed to be formed due to electrochemical reactions. The simulations predict that holes, which are necessary to initiate the electrochemical reaction but rare under regular HEMT operating conditions, can be generated through trap-assisted, band-to-band tunneling (B2B TAT). The impact of the electrical behavior of the pit (insulator or metal) on the output characteristics (ID-VD) of the HEMTs were also studied. Insulator-type pits degrade the ON-resistance, RD, while metal-types do not. At medium VD, both types of pit degrade ID, which will be recovered at higher VD. But metal-type requires larger VD to restore the ID. As the pits grow, the hole generation rate first increases (more with metal pit), then decrease after the pit-to-width ratio exceeds 20%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Physics of electronic transport in low-dimensionality materials for future FETs Effects of carbon-related oxide defects on the reliability of 4H-SiC MOSFETs Challenge of adopting TCAD in the development of power semiconductor devices for automotive applications Diameter dependence of scattering limited transport properties of Si nanowire MOSFETs under uniaxial tensile strain Novel biosensing devices for medical applications Soft contact-lens sensors for monitoring tear sugar
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1