一种新的聚类加权建模方法

D. V. Prokhorov, L. Feldkamp, T. Feldkamp
{"title":"一种新的聚类加权建模方法","authors":"D. V. Prokhorov, L. Feldkamp, T. Feldkamp","doi":"10.1109/IJCNN.2001.938412","DOIUrl":null,"url":null,"abstract":"We discuss an approach to joint density estimation called cluster-weighted modeling (CWM). The base approach was originally proposed by Gershenfeld (1998). We describe two innovations to the base CWM. Among these, the first enables the CWM to work with continuous streams of data. The second addresses the commonplace problem of local minima which may be encountered during the CWM parameter adjustment process. Our approach to mitigate this problem is quite elaborate, but it represents a principled way of improving the efficacy of the parameter adjustment process. We illustrate CWM and our performance enhancements with an example.","PeriodicalId":346955,"journal":{"name":"IJCNN'01. International Joint Conference on Neural Networks. Proceedings (Cat. No.01CH37222)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"A new approach to cluster-weighted modeling\",\"authors\":\"D. V. Prokhorov, L. Feldkamp, T. Feldkamp\",\"doi\":\"10.1109/IJCNN.2001.938412\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We discuss an approach to joint density estimation called cluster-weighted modeling (CWM). The base approach was originally proposed by Gershenfeld (1998). We describe two innovations to the base CWM. Among these, the first enables the CWM to work with continuous streams of data. The second addresses the commonplace problem of local minima which may be encountered during the CWM parameter adjustment process. Our approach to mitigate this problem is quite elaborate, but it represents a principled way of improving the efficacy of the parameter adjustment process. We illustrate CWM and our performance enhancements with an example.\",\"PeriodicalId\":346955,\"journal\":{\"name\":\"IJCNN'01. International Joint Conference on Neural Networks. Proceedings (Cat. No.01CH37222)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IJCNN'01. International Joint Conference on Neural Networks. Proceedings (Cat. No.01CH37222)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.2001.938412\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IJCNN'01. International Joint Conference on Neural Networks. Proceedings (Cat. No.01CH37222)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2001.938412","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

我们讨论了一种称为聚类加权建模(CWM)的联合密度估计方法。基本方法最初是由Gershenfeld(1998)提出的。我们描述了基础CWM的两个创新。其中,第一个特性使CWM能够处理连续的数据流。第二部分解决了在CWM参数调整过程中可能遇到的常见的局部极小值问题。我们缓解这个问题的方法非常复杂,但它代表了提高参数调整过程效率的原则方法。我们通过一个示例说明CWM和我们的性能增强。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A new approach to cluster-weighted modeling
We discuss an approach to joint density estimation called cluster-weighted modeling (CWM). The base approach was originally proposed by Gershenfeld (1998). We describe two innovations to the base CWM. Among these, the first enables the CWM to work with continuous streams of data. The second addresses the commonplace problem of local minima which may be encountered during the CWM parameter adjustment process. Our approach to mitigate this problem is quite elaborate, but it represents a principled way of improving the efficacy of the parameter adjustment process. We illustrate CWM and our performance enhancements with an example.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Chaotic analog associative memory Texture based segmentation of cell images using neural networks and mathematical morphology Center reduction algorithm for the modified probabilistic neural network equalizer Predicting the nonlinear dynamics of biological neurons using support vector machines with different kernels Sliding mode control of nonlinear systems using Gaussian radial basis function neural networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1