基于眼动追踪的读者内隐反馈评价平台

Miroslav Zivkovic, E. V. D. Broek, F. V. D. Sluis
{"title":"基于眼动追踪的读者内隐反馈评价平台","authors":"Miroslav Zivkovic, E. V. D. Broek, F. V. D. Sluis","doi":"10.1145/3232078.3232099","DOIUrl":null,"url":null,"abstract":"Large amounts of information are nowadays easily obtainable using the Internet, and using implicit feedback whether a reader finds a text interesting is desirable. Eye-tracking technology could be used for such a feedback, and a combination of eye-movement features and a textual complexity measure can be used to predict the user's interest. In this paper we give an overview of a platform developed to evaluate and visualize implicit feedback of a person who reads a text. Based on the eye-movement samples provided, a model is trained that could be used to predict comprehensibility of a user reading a text. This prediction is combined with objective complexity evaluation of the text using data mining methods, and the outcome is used to select a text (from a repository) that a user may find more valuable (interesting). We briefly discuss the requirements, architecture and implementation of this platform.","PeriodicalId":263115,"journal":{"name":"Proceedings of the 36th European Conference on Cognitive Ergonomics","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Platform for Evaluation of Readers' Implicit Feedback using Eye-Tracking\",\"authors\":\"Miroslav Zivkovic, E. V. D. Broek, F. V. D. Sluis\",\"doi\":\"10.1145/3232078.3232099\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Large amounts of information are nowadays easily obtainable using the Internet, and using implicit feedback whether a reader finds a text interesting is desirable. Eye-tracking technology could be used for such a feedback, and a combination of eye-movement features and a textual complexity measure can be used to predict the user's interest. In this paper we give an overview of a platform developed to evaluate and visualize implicit feedback of a person who reads a text. Based on the eye-movement samples provided, a model is trained that could be used to predict comprehensibility of a user reading a text. This prediction is combined with objective complexity evaluation of the text using data mining methods, and the outcome is used to select a text (from a repository) that a user may find more valuable (interesting). We briefly discuss the requirements, architecture and implementation of this platform.\",\"PeriodicalId\":263115,\"journal\":{\"name\":\"Proceedings of the 36th European Conference on Cognitive Ergonomics\",\"volume\":\"60 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 36th European Conference on Cognitive Ergonomics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3232078.3232099\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 36th European Conference on Cognitive Ergonomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3232078.3232099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

如今,大量的信息很容易通过互联网获得,使用隐式反馈来判断读者是否对某篇文章感兴趣是可取的。这种反馈可以使用眼球追踪技术,并结合眼球运动特征和文本复杂性度量来预测用户的兴趣。在本文中,我们给出了一个平台的概述,该平台用于评估和可视化阅读文本的人的隐式反馈。基于提供的眼动样本,训练一个模型,该模型可用于预测用户阅读文本的可理解性。该预测与使用数据挖掘方法对文本进行客观复杂性评估相结合,结果用于(从存储库)选择用户可能认为更有价值(感兴趣)的文本。我们简要地讨论了该平台的需求、体系结构和实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Platform for Evaluation of Readers' Implicit Feedback using Eye-Tracking
Large amounts of information are nowadays easily obtainable using the Internet, and using implicit feedback whether a reader finds a text interesting is desirable. Eye-tracking technology could be used for such a feedback, and a combination of eye-movement features and a textual complexity measure can be used to predict the user's interest. In this paper we give an overview of a platform developed to evaluate and visualize implicit feedback of a person who reads a text. Based on the eye-movement samples provided, a model is trained that could be used to predict comprehensibility of a user reading a text. This prediction is combined with objective complexity evaluation of the text using data mining methods, and the outcome is used to select a text (from a repository) that a user may find more valuable (interesting). We briefly discuss the requirements, architecture and implementation of this platform.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Mobile Screen Size Limits Multimodal Synergy Feedback on the Semantic Relevance of Search Queries Designing Digital Interactive Instructions for Children's Construction Play Mild Place Illusion: A Virtual Reality Factor to Spark Creativity in Writing Using Sound Feedback to Help Blind People Navigate
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1