选择训练自组织映射(SOM)的变量,以最好地分离预定义的集群

S. Laine
{"title":"选择训练自组织映射(SOM)的变量,以最好地分离预定义的集群","authors":"S. Laine","doi":"10.1109/ICONIP.2002.1199016","DOIUrl":null,"url":null,"abstract":"The paper presents how to find the variables that best illustrate a problem of interest when visualizing with the self-organizing map (SOM). The user defines what is interesting by labeling data points, e.g. with alphabets. These labels assign the data points into clusters. An optimization algorithm looks for the set of variables that best separates the clusters. These variables reflect the knowledge the user applied when labeling the data points. The paper measures the separability, not in the variable space, but on a SOM trained into this space. The found variables contain interesting information, and are well suited for the SOM. The trained SOM can comprehensively visualize the problem of interest, which supports discussion and learning from data. The approach is illustrated using the case of the Hitura mine; and compared with a standard statistical visualization algorithm, the Fisher discriminant analysis.","PeriodicalId":146553,"journal":{"name":"Proceedings of the 9th International Conference on Neural Information Processing, 2002. ICONIP '02.","volume":"223 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Selecting the variables that train a self-organizing map (SOM) which best separates predefined clusters\",\"authors\":\"S. Laine\",\"doi\":\"10.1109/ICONIP.2002.1199016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper presents how to find the variables that best illustrate a problem of interest when visualizing with the self-organizing map (SOM). The user defines what is interesting by labeling data points, e.g. with alphabets. These labels assign the data points into clusters. An optimization algorithm looks for the set of variables that best separates the clusters. These variables reflect the knowledge the user applied when labeling the data points. The paper measures the separability, not in the variable space, but on a SOM trained into this space. The found variables contain interesting information, and are well suited for the SOM. The trained SOM can comprehensively visualize the problem of interest, which supports discussion and learning from data. The approach is illustrated using the case of the Hitura mine; and compared with a standard statistical visualization algorithm, the Fisher discriminant analysis.\",\"PeriodicalId\":146553,\"journal\":{\"name\":\"Proceedings of the 9th International Conference on Neural Information Processing, 2002. ICONIP '02.\",\"volume\":\"223 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 9th International Conference on Neural Information Processing, 2002. ICONIP '02.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICONIP.2002.1199016\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 9th International Conference on Neural Information Processing, 2002. ICONIP '02.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICONIP.2002.1199016","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文介绍了如何在使用自组织映射(SOM)进行可视化时找到最能说明感兴趣的问题的变量。用户通过标记数据点来定义什么是有趣的,例如用字母。这些标签将数据点分配到集群中。优化算法寻找最能分离集群的一组变量。这些变量反映了用户在标记数据点时应用的知识。本文不是在变量空间中测量可分性,而是在这个空间中训练的SOM上测量可分性。找到的变量包含有趣的信息,并且非常适合SOM。经过训练的SOM可以全面地可视化感兴趣的问题,从而支持讨论和从数据中学习。以Hitura矿为例说明了这种方法;并与标准统计可视化算法Fisher判别分析进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Selecting the variables that train a self-organizing map (SOM) which best separates predefined clusters
The paper presents how to find the variables that best illustrate a problem of interest when visualizing with the self-organizing map (SOM). The user defines what is interesting by labeling data points, e.g. with alphabets. These labels assign the data points into clusters. An optimization algorithm looks for the set of variables that best separates the clusters. These variables reflect the knowledge the user applied when labeling the data points. The paper measures the separability, not in the variable space, but on a SOM trained into this space. The found variables contain interesting information, and are well suited for the SOM. The trained SOM can comprehensively visualize the problem of interest, which supports discussion and learning from data. The approach is illustrated using the case of the Hitura mine; and compared with a standard statistical visualization algorithm, the Fisher discriminant analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hardware neuron models with CMOS for auditory neural networks Extracting latent structures in numerical classification: an investigation using two factor models An application of a progressive neural network technique in the identification of suspension properties of tracked vehicles Discussions of neural network solvers for inverse optimization problems Link between energy and computation in a physical model of Hopfield network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1