{"title":"深电压级fpga的延迟、功率和能量权衡","authors":"M. Abusultan, S. Khatri","doi":"10.1145/2742060.2742120","DOIUrl":null,"url":null,"abstract":"In this paper, we present a circuit-level analysis of deep voltage-scaled FPGAs, which operate from full supply to sub-threshold voltages. The logic as well as the interconnect of the FPGA are modeled at the circuit level, and their relative contribution to the delay, power and energy of the FPGA are studied by means of circuit simulations. Three representative designs are studied to explore these design trade-offs. We conclude that the energy and delay-minimal FPGA design is one in which both the interconnect and logic are curtailed from scaling below a fixed voltage (about 550mV in our experiments). If power is a more important design factor (at the cost of delay), it is beneficial to operate both the logic and interconnect between 300mV and 800mV.","PeriodicalId":255133,"journal":{"name":"Proceedings of the 25th edition on Great Lakes Symposium on VLSI","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Delay, Power and Energy Tradeoffs in Deep Voltage-scaled FPGAs\",\"authors\":\"M. Abusultan, S. Khatri\",\"doi\":\"10.1145/2742060.2742120\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a circuit-level analysis of deep voltage-scaled FPGAs, which operate from full supply to sub-threshold voltages. The logic as well as the interconnect of the FPGA are modeled at the circuit level, and their relative contribution to the delay, power and energy of the FPGA are studied by means of circuit simulations. Three representative designs are studied to explore these design trade-offs. We conclude that the energy and delay-minimal FPGA design is one in which both the interconnect and logic are curtailed from scaling below a fixed voltage (about 550mV in our experiments). If power is a more important design factor (at the cost of delay), it is beneficial to operate both the logic and interconnect between 300mV and 800mV.\",\"PeriodicalId\":255133,\"journal\":{\"name\":\"Proceedings of the 25th edition on Great Lakes Symposium on VLSI\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-05-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 25th edition on Great Lakes Symposium on VLSI\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2742060.2742120\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 25th edition on Great Lakes Symposium on VLSI","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2742060.2742120","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Delay, Power and Energy Tradeoffs in Deep Voltage-scaled FPGAs
In this paper, we present a circuit-level analysis of deep voltage-scaled FPGAs, which operate from full supply to sub-threshold voltages. The logic as well as the interconnect of the FPGA are modeled at the circuit level, and their relative contribution to the delay, power and energy of the FPGA are studied by means of circuit simulations. Three representative designs are studied to explore these design trade-offs. We conclude that the energy and delay-minimal FPGA design is one in which both the interconnect and logic are curtailed from scaling below a fixed voltage (about 550mV in our experiments). If power is a more important design factor (at the cost of delay), it is beneficial to operate both the logic and interconnect between 300mV and 800mV.