计算高精度空间和时间导数的硅视网膜

S. Kameda, T. Yagi
{"title":"计算高精度空间和时间导数的硅视网膜","authors":"S. Kameda, T. Yagi","doi":"10.1109/IJCNN.2001.939017","DOIUrl":null,"url":null,"abstract":"A silicon retina was fabricated to emulate two fundamental types of response in the vertebrate retinal circuit, i.e. the sustained response and the transient response. The outputs of the silicon retina emulating the sustained response exhibit a Laplacian-Gaussian-like receptive field and therefore carry out a smoothing and contrast enhancement on input images. The outputs emulating the transient response were obtained by subtracting subsequent images that were smoothed by a resistive network and therefore are sensitive to moving object. The chip was applied for a real time image processing in indoor illumination.","PeriodicalId":346955,"journal":{"name":"IJCNN'01. International Joint Conference on Neural Networks. Proceedings (Cat. No.01CH37222)","volume":"49 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"A silicon retina calculating high-precision spatial and temporal derivatives\",\"authors\":\"S. Kameda, T. Yagi\",\"doi\":\"10.1109/IJCNN.2001.939017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A silicon retina was fabricated to emulate two fundamental types of response in the vertebrate retinal circuit, i.e. the sustained response and the transient response. The outputs of the silicon retina emulating the sustained response exhibit a Laplacian-Gaussian-like receptive field and therefore carry out a smoothing and contrast enhancement on input images. The outputs emulating the transient response were obtained by subtracting subsequent images that were smoothed by a resistive network and therefore are sensitive to moving object. The chip was applied for a real time image processing in indoor illumination.\",\"PeriodicalId\":346955,\"journal\":{\"name\":\"IJCNN'01. International Joint Conference on Neural Networks. Proceedings (Cat. No.01CH37222)\",\"volume\":\"49 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IJCNN'01. International Joint Conference on Neural Networks. Proceedings (Cat. No.01CH37222)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.2001.939017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IJCNN'01. International Joint Conference on Neural Networks. Proceedings (Cat. No.01CH37222)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2001.939017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

硅视网膜模拟了脊椎动物视网膜回路中的两种基本类型的反应,即持续反应和瞬态反应。模拟持续响应的硅视网膜输出表现出类似拉普拉斯-高斯的接受野,因此对输入图像进行平滑和对比度增强。模拟瞬态响应的输出是通过减去随后的图像得到的,这些图像经过电阻网络平滑,因此对运动物体敏感。该芯片应用于室内照明的实时图像处理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A silicon retina calculating high-precision spatial and temporal derivatives
A silicon retina was fabricated to emulate two fundamental types of response in the vertebrate retinal circuit, i.e. the sustained response and the transient response. The outputs of the silicon retina emulating the sustained response exhibit a Laplacian-Gaussian-like receptive field and therefore carry out a smoothing and contrast enhancement on input images. The outputs emulating the transient response were obtained by subtracting subsequent images that were smoothed by a resistive network and therefore are sensitive to moving object. The chip was applied for a real time image processing in indoor illumination.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Chaotic analog associative memory Texture based segmentation of cell images using neural networks and mathematical morphology Center reduction algorithm for the modified probabilistic neural network equalizer Predicting the nonlinear dynamics of biological neurons using support vector machines with different kernels Sliding mode control of nonlinear systems using Gaussian radial basis function neural networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1