移动机器人与SLAM导航装置的动态标定

Ryoichi Ishikawa, Takeshi Oishi, K. Ikeuchi
{"title":"移动机器人与SLAM导航装置的动态标定","authors":"Ryoichi Ishikawa, Takeshi Oishi, K. Ikeuchi","doi":"10.1109/RO-MAN46459.2019.8956356","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a dynamic calibration between a mobile robot and a device using simultaneous localization and mapping (SLAM) technology, which we termed as the SLAM device, for a robot navigation system. The navigation framework assumes loose mounting of SLAM device for easy use and requires an online adjustment to remove localization errors. The online adjustment method dynamically corrects not only the calibration errors between the SLAM device and the part of the robot to which the device is attached but also the robot encoder errors by calibrating the whole body of the robot. The online adjustment assumes that the information of the external environment and shape information of the robot are consistent. In addition to the online adjustment, we also present an offline calibration between a robot and device. The offline calibration is motion-based and we clarify the most efficient method based on the number of degrees-of-freedom of the robot movement. Our method can be easily used for various types of robots with sufficiently precise localization for navigation. In the experiments, we confirm the parameters obtained via two types of offline calibration based on the degree of freedom of robot movement. We also validate the effectiveness of the online adjustment method by plotting localized position errors during a robots intense movement. Finally, we demonstrate the navigation using a SLAM device.","PeriodicalId":286478,"journal":{"name":"2019 28th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Dynamic Calibration between a Mobile Robot and SLAM Device for Navigation\",\"authors\":\"Ryoichi Ishikawa, Takeshi Oishi, K. Ikeuchi\",\"doi\":\"10.1109/RO-MAN46459.2019.8956356\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a dynamic calibration between a mobile robot and a device using simultaneous localization and mapping (SLAM) technology, which we termed as the SLAM device, for a robot navigation system. The navigation framework assumes loose mounting of SLAM device for easy use and requires an online adjustment to remove localization errors. The online adjustment method dynamically corrects not only the calibration errors between the SLAM device and the part of the robot to which the device is attached but also the robot encoder errors by calibrating the whole body of the robot. The online adjustment assumes that the information of the external environment and shape information of the robot are consistent. In addition to the online adjustment, we also present an offline calibration between a robot and device. The offline calibration is motion-based and we clarify the most efficient method based on the number of degrees-of-freedom of the robot movement. Our method can be easily used for various types of robots with sufficiently precise localization for navigation. In the experiments, we confirm the parameters obtained via two types of offline calibration based on the degree of freedom of robot movement. We also validate the effectiveness of the online adjustment method by plotting localized position errors during a robots intense movement. Finally, we demonstrate the navigation using a SLAM device.\",\"PeriodicalId\":286478,\"journal\":{\"name\":\"2019 28th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 28th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RO-MAN46459.2019.8956356\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 28th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RO-MAN46459.2019.8956356","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们提出了一个移动机器人和一个设备之间的动态校准使用同步定位和地图(SLAM)技术,我们称之为SLAM设备,机器人导航系统。为了方便使用,导航框架假设SLAM装置安装松散,需要在线调整以消除定位错误。在线调整方法不仅可以动态修正SLAM装置与所附机器人部分之间的标定误差,还可以通过对机器人整体进行标定来修正机器人编码器的误差。在线调整假设外部环境信息和机器人的形状信息是一致的。除了在线调整外,我们还提出了机器人与设备之间的离线校准。离线标定是基于运动的,我们明确了基于机器人运动的自由度数的最有效的方法。我们的方法可以很容易地用于具有足够精确定位的各种类型的机器人进行导航。在实验中,我们根据机器人的运动自由度,对两种离线标定得到的参数进行了验证。通过绘制机器人剧烈运动时的局部位置误差,验证了在线调整方法的有效性。最后,我们演示了使用SLAM设备的导航。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dynamic Calibration between a Mobile Robot and SLAM Device for Navigation
In this paper, we propose a dynamic calibration between a mobile robot and a device using simultaneous localization and mapping (SLAM) technology, which we termed as the SLAM device, for a robot navigation system. The navigation framework assumes loose mounting of SLAM device for easy use and requires an online adjustment to remove localization errors. The online adjustment method dynamically corrects not only the calibration errors between the SLAM device and the part of the robot to which the device is attached but also the robot encoder errors by calibrating the whole body of the robot. The online adjustment assumes that the information of the external environment and shape information of the robot are consistent. In addition to the online adjustment, we also present an offline calibration between a robot and device. The offline calibration is motion-based and we clarify the most efficient method based on the number of degrees-of-freedom of the robot movement. Our method can be easily used for various types of robots with sufficiently precise localization for navigation. In the experiments, we confirm the parameters obtained via two types of offline calibration based on the degree of freedom of robot movement. We also validate the effectiveness of the online adjustment method by plotting localized position errors during a robots intense movement. Finally, we demonstrate the navigation using a SLAM device.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Comparison of Descriptive and Emotive Labels to Explain Human Perception of Gait Styles on a Compass Walker in Variable Contexts Communicating with SanTO – the first Catholic robot Transferring Dexterous Surgical Skill Knowledge between Robots for Semi-autonomous Teleoperation Improving Robot Transparency: An Investigation With Mobile Augmented Reality Development and Applicability of a Cable-driven Wearable Adaptive Rehabilitation Suit (WeARS)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1