后因子分析作为ICA的后处理,新的优化算法作为准量子动力学

T. Akuzawa
{"title":"后因子分析作为ICA的后处理,新的优化算法作为准量子动力学","authors":"T. Akuzawa","doi":"10.1109/IJCNN.2001.939490","DOIUrl":null,"url":null,"abstract":"Optimization problems on the general Lie group GL(N, |R) are naturally considered as those on the coset R/sup x(N)//GL(N, R) when the optimum is scale invariant. In this paper, we propose a new algorithm for optimization problems on this coset, named nested Newton's method, where we decompose the flow of optimization into quantum-like dynamics of N-particles under two-body interactions. Next, we propose a post-processing for independent component analysis (ICA) without pre-whitening, which we name the \"post factor analysis\" (post-FA). By post-FA we can estimate the noise variance beyond the known bound for the FA.","PeriodicalId":346955,"journal":{"name":"IJCNN'01. International Joint Conference on Neural Networks. Proceedings (Cat. No.01CH37222)","volume":"91 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2001-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Post factor analysis as a post-processing for ICA and new optimization algorithm as para-quantum dynamics\",\"authors\":\"T. Akuzawa\",\"doi\":\"10.1109/IJCNN.2001.939490\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Optimization problems on the general Lie group GL(N, |R) are naturally considered as those on the coset R/sup x(N)//GL(N, R) when the optimum is scale invariant. In this paper, we propose a new algorithm for optimization problems on this coset, named nested Newton's method, where we decompose the flow of optimization into quantum-like dynamics of N-particles under two-body interactions. Next, we propose a post-processing for independent component analysis (ICA) without pre-whitening, which we name the \\\"post factor analysis\\\" (post-FA). By post-FA we can estimate the noise variance beyond the known bound for the FA.\",\"PeriodicalId\":346955,\"journal\":{\"name\":\"IJCNN'01. International Joint Conference on Neural Networks. Proceedings (Cat. No.01CH37222)\",\"volume\":\"91 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IJCNN'01. International Joint Conference on Neural Networks. Proceedings (Cat. No.01CH37222)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IJCNN.2001.939490\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IJCNN'01. International Joint Conference on Neural Networks. Proceedings (Cat. No.01CH37222)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IJCNN.2001.939490","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

一般李群GL(N, |R)上的优化问题,自然地被认为是当最优是尺度不变时,在余集R/sup x(N)//GL(N, R)上的优化问题。在本文中,我们提出了一种新的算法,即嵌套牛顿法,将优化过程分解为两体相互作用下n粒子的类量子动力学。接下来,我们提出了一种无需预白化的独立成分分析(ICA)后处理方法,我们将其命名为“后因子分析”(post- fa)。通过后FA,我们可以估计出超出已知FA边界的噪声方差。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Post factor analysis as a post-processing for ICA and new optimization algorithm as para-quantum dynamics
Optimization problems on the general Lie group GL(N, |R) are naturally considered as those on the coset R/sup x(N)//GL(N, R) when the optimum is scale invariant. In this paper, we propose a new algorithm for optimization problems on this coset, named nested Newton's method, where we decompose the flow of optimization into quantum-like dynamics of N-particles under two-body interactions. Next, we propose a post-processing for independent component analysis (ICA) without pre-whitening, which we name the "post factor analysis" (post-FA). By post-FA we can estimate the noise variance beyond the known bound for the FA.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Chaotic analog associative memory Texture based segmentation of cell images using neural networks and mathematical morphology Center reduction algorithm for the modified probabilistic neural network equalizer Predicting the nonlinear dynamics of biological neurons using support vector machines with different kernels Sliding mode control of nonlinear systems using Gaussian radial basis function neural networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1