双方的匹配

Tenindra Abeywickrama, Victor Liang, K. Tan
{"title":"双方的匹配","authors":"Tenindra Abeywickrama, Victor Liang, K. Tan","doi":"10.1145/3542700.3542713","DOIUrl":null,"url":null,"abstract":"The Kuhn-Munkres (KM) algorithm is a classical combinatorial optimization algorithm that is widely used for minimum cost bipartite matching in many real-world applications, such as transportation. For example, a ride-hailing service may use it to find the optimal assignment of drivers to passengers to minimize the overall wait time. Typically, given two bipartite sets, this process involves computing the edge costs between all bipartite pairs and finding an optimal matching. However, existing works overlook the impact of edge cost computation on the overall running time. In reality, edge computation often significantly outweighs the computation of the optimal assignment itself, as in the case of assigning drivers to passengers which involves computation of expensive graph shortest paths. Following on from this, we also observe common real-world settings exhibit a useful property that allows us to incrementally compute edge costs only as required using an inexpensive lower-bound heuristic. This technique significantly reduces the overall cost of assignment compared to the original KM algorithm, as we demonstrate experimentally on multiple real-world data sets and workloads. Moreover, our algorithm is not limited to this domain and is potentially applicable in other settings where lower-bounding heuristics are available.","PeriodicalId":346332,"journal":{"name":"ACM SIGMOD Record","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Bipartite Matching\",\"authors\":\"Tenindra Abeywickrama, Victor Liang, K. Tan\",\"doi\":\"10.1145/3542700.3542713\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Kuhn-Munkres (KM) algorithm is a classical combinatorial optimization algorithm that is widely used for minimum cost bipartite matching in many real-world applications, such as transportation. For example, a ride-hailing service may use it to find the optimal assignment of drivers to passengers to minimize the overall wait time. Typically, given two bipartite sets, this process involves computing the edge costs between all bipartite pairs and finding an optimal matching. However, existing works overlook the impact of edge cost computation on the overall running time. In reality, edge computation often significantly outweighs the computation of the optimal assignment itself, as in the case of assigning drivers to passengers which involves computation of expensive graph shortest paths. Following on from this, we also observe common real-world settings exhibit a useful property that allows us to incrementally compute edge costs only as required using an inexpensive lower-bound heuristic. This technique significantly reduces the overall cost of assignment compared to the original KM algorithm, as we demonstrate experimentally on multiple real-world data sets and workloads. Moreover, our algorithm is not limited to this domain and is potentially applicable in other settings where lower-bounding heuristics are available.\",\"PeriodicalId\":346332,\"journal\":{\"name\":\"ACM SIGMOD Record\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM SIGMOD Record\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3542700.3542713\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SIGMOD Record","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3542700.3542713","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

Kuhn-Munkres (KM)算法是一种经典的组合优化算法,在交通运输等实际应用中广泛用于最小代价二部匹配。例如,叫车服务可能会使用它来找到司机对乘客的最佳分配,以最大限度地减少总体等待时间。通常,给定两个二部集,该过程涉及计算所有二部对之间的边代价并找到最优匹配。然而,现有的工作忽略了边缘成本计算对整体运行时间的影响。在现实中,边缘计算通常比最优分配本身的计算重要得多,比如在将司机分配给乘客的情况下,这涉及到昂贵的图最短路径的计算。在此基础上,我们还观察到常见的现实世界设置显示出一个有用的属性,该属性允许我们仅在需要时使用廉价的下界启发式增量计算边缘成本。与原始KM算法相比,该技术显著降低了分配的总成本,我们在多个真实数据集和工作负载上进行了实验验证。此外,我们的算法并不局限于这个领域,并且可能适用于其他可以使用下限启发式的设置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Bipartite Matching
The Kuhn-Munkres (KM) algorithm is a classical combinatorial optimization algorithm that is widely used for minimum cost bipartite matching in many real-world applications, such as transportation. For example, a ride-hailing service may use it to find the optimal assignment of drivers to passengers to minimize the overall wait time. Typically, given two bipartite sets, this process involves computing the edge costs between all bipartite pairs and finding an optimal matching. However, existing works overlook the impact of edge cost computation on the overall running time. In reality, edge computation often significantly outweighs the computation of the optimal assignment itself, as in the case of assigning drivers to passengers which involves computation of expensive graph shortest paths. Following on from this, we also observe common real-world settings exhibit a useful property that allows us to incrementally compute edge costs only as required using an inexpensive lower-bound heuristic. This technique significantly reduces the overall cost of assignment compared to the original KM algorithm, as we demonstrate experimentally on multiple real-world data sets and workloads. Moreover, our algorithm is not limited to this domain and is potentially applicable in other settings where lower-bounding heuristics are available.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Technical Perspective: Efficient and Reusable Lazy Sampling Unicorn: A Unified Multi-Tasking Matching Model Learning to Restructure Tables Automatically DBSP: Incremental Computation on Streams and Its Applications to Databases Efficient and Reusable Lazy Sampling
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1