基于深度学习的相位检索混合方法

Çaǧatay Işıl, F. Oktem, Aykut Koç
{"title":"基于深度学习的相位检索混合方法","authors":"Çaǧatay Işıl, F. Oktem, Aykut Koç","doi":"10.1364/COSI.2019.CTH2C.5","DOIUrl":null,"url":null,"abstract":"We develop a phase retrieval algorithm that utilizes the hybrid-input-output (HIO) algorithm with a deep neural network (DNN). The DNN architecture, which is trained to remove the artifacts of HIO, is used iteratively with HIO to improve the reconstructions. The results demonstrate the effectiveness of the approach with little additional cost.","PeriodicalId":123636,"journal":{"name":"Imaging and Applied Optics 2019 (COSI, IS, MATH, pcAOP)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Deep Learning-Based Hybrid Approach for Phase Retrieval\",\"authors\":\"Çaǧatay Işıl, F. Oktem, Aykut Koç\",\"doi\":\"10.1364/COSI.2019.CTH2C.5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We develop a phase retrieval algorithm that utilizes the hybrid-input-output (HIO) algorithm with a deep neural network (DNN). The DNN architecture, which is trained to remove the artifacts of HIO, is used iteratively with HIO to improve the reconstructions. The results demonstrate the effectiveness of the approach with little additional cost.\",\"PeriodicalId\":123636,\"journal\":{\"name\":\"Imaging and Applied Optics 2019 (COSI, IS, MATH, pcAOP)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Imaging and Applied Optics 2019 (COSI, IS, MATH, pcAOP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1364/COSI.2019.CTH2C.5\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Imaging and Applied Optics 2019 (COSI, IS, MATH, pcAOP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/COSI.2019.CTH2C.5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

我们开发了一种相位检索算法,该算法利用混合输入输出(HIO)算法和深度神经网络(DNN)。DNN架构经过训练,可以去除HIO的工件,并与HIO迭代使用以改进重建。结果表明,该方法的有效性和额外的成本很少。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deep Learning-Based Hybrid Approach for Phase Retrieval
We develop a phase retrieval algorithm that utilizes the hybrid-input-output (HIO) algorithm with a deep neural network (DNN). The DNN architecture, which is trained to remove the artifacts of HIO, is used iteratively with HIO to improve the reconstructions. The results demonstrate the effectiveness of the approach with little additional cost.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
How to Exploit Prior Knowledge in Industrial 3D-Metrology Nanostructured substrates for super-resolution imaging Experimental Investigation of Gaussian and Vortex Beam Propagation in an Extremely Calm In-Door Atmospere Nonlinear Diffraction Tomography without Iterations Speckle based Extended Depth-of-Field for Macroscopic Imaging: First results
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1