Tanokkorn Chenvidhya, M. Seapan, P. Parinya, B. Wiengmoon, D. Chenvidhya, R. Songprakorp, C. Limsakul, Yaowanee Sangpongsanont, Nittaya Tannil
{"title":"基于减热的屋顶光伏系统功率值研究","authors":"Tanokkorn Chenvidhya, M. Seapan, P. Parinya, B. Wiengmoon, D. Chenvidhya, R. Songprakorp, C. Limsakul, Yaowanee Sangpongsanont, Nittaya Tannil","doi":"10.1117/12.2188534","DOIUrl":null,"url":null,"abstract":"PV rooftop system can generally be installed to produce electricity for the domestic house, office, small enterprise as well as factory. Such a system has direct useful for reducing peak load, meanwhile it also provides shaded area on the roof and hence the heat gain into the building is reduced. This study aims to investigate the shading effect on reduction of heat transfer into the building. The 49 kWp of PV rooftop system has been installed on the deck of the office building located in the middle of Thailand where the latitude of 14 ° above the equator. The estimation of heat gain into the building due to the solar irradiation throughout a day for one year has been carried out, before and after the installation of the PV rooftop system. Then the Newton’s law of cooling is applied to calculate the heat gain. The calculation and the measurement of the heat reduction are compared. Finally, the indirect benefit of the PV rooftop system installed is evaluated in terms of power value.","PeriodicalId":142821,"journal":{"name":"SPIE Optics + Photonics for Sustainable Energy","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Investigation of power values of PV rooftop systems based on heat gain reduction\",\"authors\":\"Tanokkorn Chenvidhya, M. Seapan, P. Parinya, B. Wiengmoon, D. Chenvidhya, R. Songprakorp, C. Limsakul, Yaowanee Sangpongsanont, Nittaya Tannil\",\"doi\":\"10.1117/12.2188534\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"PV rooftop system can generally be installed to produce electricity for the domestic house, office, small enterprise as well as factory. Such a system has direct useful for reducing peak load, meanwhile it also provides shaded area on the roof and hence the heat gain into the building is reduced. This study aims to investigate the shading effect on reduction of heat transfer into the building. The 49 kWp of PV rooftop system has been installed on the deck of the office building located in the middle of Thailand where the latitude of 14 ° above the equator. The estimation of heat gain into the building due to the solar irradiation throughout a day for one year has been carried out, before and after the installation of the PV rooftop system. Then the Newton’s law of cooling is applied to calculate the heat gain. The calculation and the measurement of the heat reduction are compared. Finally, the indirect benefit of the PV rooftop system installed is evaluated in terms of power value.\",\"PeriodicalId\":142821,\"journal\":{\"name\":\"SPIE Optics + Photonics for Sustainable Energy\",\"volume\":\"17 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SPIE Optics + Photonics for Sustainable Energy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2188534\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPIE Optics + Photonics for Sustainable Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2188534","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Investigation of power values of PV rooftop systems based on heat gain reduction
PV rooftop system can generally be installed to produce electricity for the domestic house, office, small enterprise as well as factory. Such a system has direct useful for reducing peak load, meanwhile it also provides shaded area on the roof and hence the heat gain into the building is reduced. This study aims to investigate the shading effect on reduction of heat transfer into the building. The 49 kWp of PV rooftop system has been installed on the deck of the office building located in the middle of Thailand where the latitude of 14 ° above the equator. The estimation of heat gain into the building due to the solar irradiation throughout a day for one year has been carried out, before and after the installation of the PV rooftop system. Then the Newton’s law of cooling is applied to calculate the heat gain. The calculation and the measurement of the heat reduction are compared. Finally, the indirect benefit of the PV rooftop system installed is evaluated in terms of power value.