基于CNN的表面缺陷检测与识别

Oleg Evstafev, Sergey V. Shavetov
{"title":"基于CNN的表面缺陷检测与识别","authors":"Oleg Evstafev, Sergey V. Shavetov","doi":"10.1109/CoDIT55151.2022.9803911","DOIUrl":null,"url":null,"abstract":"The design and development of surface defect detection and recognition systems for optical non-destructive testing (NDT) tasks is a complex, important and pressing problem today. Detection and classification of surface defects using Computer Vision (CV) and Machine Learning (ML) algorithms serves as an effective tool for production process control, quality management and increasing the profitability of enterprises. In this paper, Deep Learning (DL) and Computer Vision (CV) techniques are used to solve the problem of surface defect detection. Using Convolutional Neural Network (CNN), detection and recognition of various defects is carried out to improve production standards and process efficiency. The outcome of this paper is a comparative analysis of DL models and the selection of an algorithm designed to find and classify defects online. The application of such CNN models could allow the creation of a tool that considerably facilitates human work.","PeriodicalId":185510,"journal":{"name":"2022 8th International Conference on Control, Decision and Information Technologies (CoDIT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Surface Defect Detection and Recognition Based on CNN\",\"authors\":\"Oleg Evstafev, Sergey V. Shavetov\",\"doi\":\"10.1109/CoDIT55151.2022.9803911\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The design and development of surface defect detection and recognition systems for optical non-destructive testing (NDT) tasks is a complex, important and pressing problem today. Detection and classification of surface defects using Computer Vision (CV) and Machine Learning (ML) algorithms serves as an effective tool for production process control, quality management and increasing the profitability of enterprises. In this paper, Deep Learning (DL) and Computer Vision (CV) techniques are used to solve the problem of surface defect detection. Using Convolutional Neural Network (CNN), detection and recognition of various defects is carried out to improve production standards and process efficiency. The outcome of this paper is a comparative analysis of DL models and the selection of an algorithm designed to find and classify defects online. The application of such CNN models could allow the creation of a tool that considerably facilitates human work.\",\"PeriodicalId\":185510,\"journal\":{\"name\":\"2022 8th International Conference on Control, Decision and Information Technologies (CoDIT)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 8th International Conference on Control, Decision and Information Technologies (CoDIT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CoDIT55151.2022.9803911\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 8th International Conference on Control, Decision and Information Technologies (CoDIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CoDIT55151.2022.9803911","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

设计和开发用于光学无损检测(NDT)任务的表面缺陷检测和识别系统是当今一个复杂、重要和紧迫的问题。利用计算机视觉(CV)和机器学习(ML)算法对表面缺陷进行检测和分类,是生产过程控制、质量管理和提高企业盈利能力的有效工具。本文采用深度学习(DL)和计算机视觉(CV)技术来解决表面缺陷检测问题。利用卷积神经网络(CNN)对各种缺陷进行检测和识别,以提高生产标准和工艺效率。本文的结果是对深度学习模型进行了比较分析,并选择了一种用于在线发现和分类缺陷的算法。这种CNN模型的应用可以创建一种工具,大大方便了人类的工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Surface Defect Detection and Recognition Based on CNN
The design and development of surface defect detection and recognition systems for optical non-destructive testing (NDT) tasks is a complex, important and pressing problem today. Detection and classification of surface defects using Computer Vision (CV) and Machine Learning (ML) algorithms serves as an effective tool for production process control, quality management and increasing the profitability of enterprises. In this paper, Deep Learning (DL) and Computer Vision (CV) techniques are used to solve the problem of surface defect detection. Using Convolutional Neural Network (CNN), detection and recognition of various defects is carried out to improve production standards and process efficiency. The outcome of this paper is a comparative analysis of DL models and the selection of an algorithm designed to find and classify defects online. The application of such CNN models could allow the creation of a tool that considerably facilitates human work.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Identification of Human Model Parameters for the Human-Machine Control Systems Design A Dual-channel Attention Model for Optical Microscope Pollen Classification Application of Machine Learning in the producer's optimal control problem with non-stable demand Comparison Between Model-Based and Data-Based Methods for Fault Diagnosis of Railway Turnouts Improved Multi-Particle Swarm Optimization based on multi-exemplar and forgetting ability
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1