雷电通道直径对碳纤维增强聚合物基(CFRP)复合材料层合板损伤的影响

K. Yousefpour, Mojtaba Rostaghi Chalaki, Wenhua Lin, F. Haque, Yeqing Wang, Chanyeop Park
{"title":"雷电通道直径对碳纤维增强聚合物基(CFRP)复合材料层合板损伤的影响","authors":"K. Yousefpour, Mojtaba Rostaghi Chalaki, Wenhua Lin, F. Haque, Yeqing Wang, Chanyeop Park","doi":"10.1109/eic47619.2020.9158586","DOIUrl":null,"url":null,"abstract":"Carbon fiber reinforced polymer matrix (CFRP) composite laminates are increasingly used as structural materials in the aerospace industry owing to their various advantages such as the corrosion resistant property, high specific strength and modulus, high fatigue strength and fatigue damage tolerance, low coefficient of thermal expansion, and light weight. Such an increasing use of CFRP composite laminates raises significant concern over lightning strike impact and necessitates the investigation of their lightning strike damage characteristics. The diameter of an actual lightning arc channel varies from several centimeters to several meters according to reported photographs and ionizing wave analysis. A thorough understanding on the material damage characteristics caused by a lightning strike impact is essential for reducing the lightning strike damage of the composite laminates while maintaining the mechanical properties. There have been numerous studies that investigated the effect of lightning discharges on aircraft composite structures, but the impact of the lightning channel diameter has not been systematically investigated. The goal of this research is to find the correlation between the diameter of electric arcs observed in lightning discharges and the level of damage it causes on CFRP composite laminates.","PeriodicalId":286019,"journal":{"name":"2020 IEEE Electrical Insulation Conference (EIC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"The Impact of Lightning Channel Diameter on the Damage of Carbon Fiber Reinforced Polymer Matrix (CFRP) Composite Laminates\",\"authors\":\"K. Yousefpour, Mojtaba Rostaghi Chalaki, Wenhua Lin, F. Haque, Yeqing Wang, Chanyeop Park\",\"doi\":\"10.1109/eic47619.2020.9158586\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Carbon fiber reinforced polymer matrix (CFRP) composite laminates are increasingly used as structural materials in the aerospace industry owing to their various advantages such as the corrosion resistant property, high specific strength and modulus, high fatigue strength and fatigue damage tolerance, low coefficient of thermal expansion, and light weight. Such an increasing use of CFRP composite laminates raises significant concern over lightning strike impact and necessitates the investigation of their lightning strike damage characteristics. The diameter of an actual lightning arc channel varies from several centimeters to several meters according to reported photographs and ionizing wave analysis. A thorough understanding on the material damage characteristics caused by a lightning strike impact is essential for reducing the lightning strike damage of the composite laminates while maintaining the mechanical properties. There have been numerous studies that investigated the effect of lightning discharges on aircraft composite structures, but the impact of the lightning channel diameter has not been systematically investigated. The goal of this research is to find the correlation between the diameter of electric arcs observed in lightning discharges and the level of damage it causes on CFRP composite laminates.\",\"PeriodicalId\":286019,\"journal\":{\"name\":\"2020 IEEE Electrical Insulation Conference (EIC)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE Electrical Insulation Conference (EIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/eic47619.2020.9158586\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Electrical Insulation Conference (EIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/eic47619.2020.9158586","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

碳纤维增强聚合物基(CFRP)复合材料层合板具有耐腐蚀、高比强度和模量、高疲劳强度和疲劳损伤容限、热膨胀系数低、重量轻等优点,在航空航天工业中越来越多地用作结构材料。CFRP复合材料层压板的使用日益增加,引起了人们对雷击影响的极大关注,并有必要对其雷击损伤特性进行研究。根据报道的照片和电离波分析,实际闪电弧通道的直径从几厘米到几米不等。深入了解材料在雷击冲击下的损伤特性,对于降低复合材料的雷击损伤,同时保持复合材料的力学性能至关重要。已有大量研究探讨了闪电放电对飞机复合材料结构的影响,但对闪电通道直径的影响还没有系统的研究。本研究的目的是找出雷电放电中观察到的电弧直径与其对CFRP复合材料层合板造成的损伤程度之间的相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Impact of Lightning Channel Diameter on the Damage of Carbon Fiber Reinforced Polymer Matrix (CFRP) Composite Laminates
Carbon fiber reinforced polymer matrix (CFRP) composite laminates are increasingly used as structural materials in the aerospace industry owing to their various advantages such as the corrosion resistant property, high specific strength and modulus, high fatigue strength and fatigue damage tolerance, low coefficient of thermal expansion, and light weight. Such an increasing use of CFRP composite laminates raises significant concern over lightning strike impact and necessitates the investigation of their lightning strike damage characteristics. The diameter of an actual lightning arc channel varies from several centimeters to several meters according to reported photographs and ionizing wave analysis. A thorough understanding on the material damage characteristics caused by a lightning strike impact is essential for reducing the lightning strike damage of the composite laminates while maintaining the mechanical properties. There have been numerous studies that investigated the effect of lightning discharges on aircraft composite structures, but the impact of the lightning channel diameter has not been systematically investigated. The goal of this research is to find the correlation between the diameter of electric arcs observed in lightning discharges and the level of damage it causes on CFRP composite laminates.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Onsite Testing and Diagnosis of Medium Voltage Resin Impregnated Paper (RIP) Insulated Buses by Using Very Low Frequency High Voltage Analysis and suggestion on the chromatographic detection of inverted oil immersed current transformer Detection of Partial Discharges Occurring in Propulsion Coils of Superconducting Maglev Systems from a Test Bogie Running at High Speed Using a Radio Interferometer System with a Vector-Antenna Life expectancy of high voltage bushings based on incipient failure detections: a practical approach Approaches to the forensic failure investigation of medium voltage polymeric cables
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1