{"title":"一种具有无电容高PSR LDO和热保护机制的用于人工视网膜的无线电力传输子系统","authors":"Yen-Fu Chen, K. Tang","doi":"10.1109/VLSI-DAT.2015.7114516","DOIUrl":null,"url":null,"abstract":"This paper presents a wireless power transmission subsystem with high power supply rejection (PSR) low dropout (LDO) regulator and thermal protection mechanism for artificial retina application. The proposed subsystem performs the functions of rectification, regulation and thermal detection. It can provide a stable DC source for implanted devices, and the subsystem only needs a small rectification capacitor. The proposed LDO achieves high PSRR performance of 46 dB at 10 MHz without any external capacitor. Moreover, the system contains the thermal protection mechanism to prevent cells from being damaged. A power controller in the system controls the received power by adjusting resonant capacitance in feedback. By controlling the received power, the system avoids receiving excessive power, enhances the power transmission efficiency, and avoids the device to be damaged by excessive heat. The proposed subsystem is to be fabricated with the TSMC 0.18 um CMOS process and occupies area of 556 um × 700 um. It achieves a high power conversion efficiency of 73 % under output voltage of 3.3 V and load current of 5 mA.","PeriodicalId":369130,"journal":{"name":"VLSI Design, Automation and Test(VLSI-DAT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A wireless power transmission subsystem with capacitor-less high PSR LDO and thermal protection mechanism for artificial retina application\",\"authors\":\"Yen-Fu Chen, K. Tang\",\"doi\":\"10.1109/VLSI-DAT.2015.7114516\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a wireless power transmission subsystem with high power supply rejection (PSR) low dropout (LDO) regulator and thermal protection mechanism for artificial retina application. The proposed subsystem performs the functions of rectification, regulation and thermal detection. It can provide a stable DC source for implanted devices, and the subsystem only needs a small rectification capacitor. The proposed LDO achieves high PSRR performance of 46 dB at 10 MHz without any external capacitor. Moreover, the system contains the thermal protection mechanism to prevent cells from being damaged. A power controller in the system controls the received power by adjusting resonant capacitance in feedback. By controlling the received power, the system avoids receiving excessive power, enhances the power transmission efficiency, and avoids the device to be damaged by excessive heat. The proposed subsystem is to be fabricated with the TSMC 0.18 um CMOS process and occupies area of 556 um × 700 um. It achieves a high power conversion efficiency of 73 % under output voltage of 3.3 V and load current of 5 mA.\",\"PeriodicalId\":369130,\"journal\":{\"name\":\"VLSI Design, Automation and Test(VLSI-DAT)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-04-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"VLSI Design, Automation and Test(VLSI-DAT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VLSI-DAT.2015.7114516\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"VLSI Design, Automation and Test(VLSI-DAT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSI-DAT.2015.7114516","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
摘要
本文提出了一种具有高电源抑制(PSR)、低差(LDO)调节器和热保护机制的用于人工视网膜的无线电力传输子系统。该子系统具有整流、调节和热检测功能。它可以为植入器件提供稳定的直流电源,并且子系统只需要一个小的整流电容。在没有任何外部电容的情况下,提出的LDO在10 MHz时实现了46 dB的高PSRR性能。此外,该系统包含热保护机制,防止细胞被损坏。系统中的功率控制器通过调节反馈谐振电容来控制接收功率。通过控制接收功率,避免系统接收功率过大,提高功率传输效率,避免设备受热损坏。该子系统采用台积电0.18 um CMOS工艺制造,占地面积为556 um × 700 um。在输出电压为3.3 V,负载电流为5 mA的情况下,其功率转换效率高达73%。
A wireless power transmission subsystem with capacitor-less high PSR LDO and thermal protection mechanism for artificial retina application
This paper presents a wireless power transmission subsystem with high power supply rejection (PSR) low dropout (LDO) regulator and thermal protection mechanism for artificial retina application. The proposed subsystem performs the functions of rectification, regulation and thermal detection. It can provide a stable DC source for implanted devices, and the subsystem only needs a small rectification capacitor. The proposed LDO achieves high PSRR performance of 46 dB at 10 MHz without any external capacitor. Moreover, the system contains the thermal protection mechanism to prevent cells from being damaged. A power controller in the system controls the received power by adjusting resonant capacitance in feedback. By controlling the received power, the system avoids receiving excessive power, enhances the power transmission efficiency, and avoids the device to be damaged by excessive heat. The proposed subsystem is to be fabricated with the TSMC 0.18 um CMOS process and occupies area of 556 um × 700 um. It achieves a high power conversion efficiency of 73 % under output voltage of 3.3 V and load current of 5 mA.