{"title":"节能逻辑和SRAM设计:一个案例研究","authors":"N. Reynders, B. Rooseleer, W. Dehaene","doi":"10.1109/FTFC.2014.6828616","DOIUrl":null,"url":null,"abstract":"This paper discusses energy-efficient design, both for logic and for memories. For datapaths which are controlled by dynamic energy, high energy-efficiency can be obtained by significantly reducing the supply voltage. However, simply lowering VDD does not automatically imply more energy-efficient operation for SRAM memories, as they are dominated by static leakage. This paper identifies which design methodologies can be employed to achieve high energy-efficiency. In particular, a JPEG encoder fabricated in a 40nm CMOS technology is used as a case study to determine the trade-offs, challenges and benefits of energy-efficient design.","PeriodicalId":138166,"journal":{"name":"2014 IEEE Faible Tension Faible Consommation","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Energy-efficient logic and SRAM design: A case study\",\"authors\":\"N. Reynders, B. Rooseleer, W. Dehaene\",\"doi\":\"10.1109/FTFC.2014.6828616\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper discusses energy-efficient design, both for logic and for memories. For datapaths which are controlled by dynamic energy, high energy-efficiency can be obtained by significantly reducing the supply voltage. However, simply lowering VDD does not automatically imply more energy-efficient operation for SRAM memories, as they are dominated by static leakage. This paper identifies which design methodologies can be employed to achieve high energy-efficiency. In particular, a JPEG encoder fabricated in a 40nm CMOS technology is used as a case study to determine the trade-offs, challenges and benefits of energy-efficient design.\",\"PeriodicalId\":138166,\"journal\":{\"name\":\"2014 IEEE Faible Tension Faible Consommation\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Faible Tension Faible Consommation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FTFC.2014.6828616\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Faible Tension Faible Consommation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FTFC.2014.6828616","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Energy-efficient logic and SRAM design: A case study
This paper discusses energy-efficient design, both for logic and for memories. For datapaths which are controlled by dynamic energy, high energy-efficiency can be obtained by significantly reducing the supply voltage. However, simply lowering VDD does not automatically imply more energy-efficient operation for SRAM memories, as they are dominated by static leakage. This paper identifies which design methodologies can be employed to achieve high energy-efficiency. In particular, a JPEG encoder fabricated in a 40nm CMOS technology is used as a case study to determine the trade-offs, challenges and benefits of energy-efficient design.