一种数字神经芯片的设计:应用神经网络进行光学字符识别

D. Jacquet, G. Saucier
{"title":"一种数字神经芯片的设计:应用神经网络进行光学字符识别","authors":"D. Jacquet, G. Saucier","doi":"10.1109/EDTC.1994.326868","DOIUrl":null,"url":null,"abstract":"Presents the design of a dedicated chip achieving the recognition phase of layered neural networks. General back-propagation (GBP) and learning vector quantization (LVQ) neurons can be emulated on this chip (called the OCR-chip). It consists of five processors: four neuron processors interconnected in a ring, each are computing several states of different GBP neurons, and a LVQ processor used to compute the states of the LVQ neurons. Connections between GBP neurons folded on the same processor are implemented in each processor by using an address generator based on modulus m counters. An optical character recognition (OCR) neural network (840 neurons in 4 layers and 800 LVQ neurons) is used as demonstrator.<<ETX>>","PeriodicalId":244297,"journal":{"name":"Proceedings of European Design and Test Conference EDAC-ETC-EUROASIC","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Design of a digital neural chip: application to optical character recognition by neural network\",\"authors\":\"D. Jacquet, G. Saucier\",\"doi\":\"10.1109/EDTC.1994.326868\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Presents the design of a dedicated chip achieving the recognition phase of layered neural networks. General back-propagation (GBP) and learning vector quantization (LVQ) neurons can be emulated on this chip (called the OCR-chip). It consists of five processors: four neuron processors interconnected in a ring, each are computing several states of different GBP neurons, and a LVQ processor used to compute the states of the LVQ neurons. Connections between GBP neurons folded on the same processor are implemented in each processor by using an address generator based on modulus m counters. An optical character recognition (OCR) neural network (840 neurons in 4 layers and 800 LVQ neurons) is used as demonstrator.<<ETX>>\",\"PeriodicalId\":244297,\"journal\":{\"name\":\"Proceedings of European Design and Test Conference EDAC-ETC-EUROASIC\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of European Design and Test Conference EDAC-ETC-EUROASIC\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EDTC.1994.326868\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of European Design and Test Conference EDAC-ETC-EUROASIC","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EDTC.1994.326868","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

提出了一种实现分层神经网络识别相位的专用芯片设计。通用反向传播(GBP)和学习向量量化(LVQ)神经元可以在该芯片(称为ocr芯片)上仿真。它由五个处理器组成:四个神经元处理器相互连接在一个环中,每个处理器计算不同GBP神经元的几个状态,以及一个LVQ处理器用于计算LVQ神经元的状态。在同一处理器上折叠的GBP神经元之间的连接在每个处理器中使用基于模数m计数器的地址生成器实现。使用光学字符识别(OCR)神经网络(4层840个神经元和800个LVQ神经元)作为演示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Design of a digital neural chip: application to optical character recognition by neural network
Presents the design of a dedicated chip achieving the recognition phase of layered neural networks. General back-propagation (GBP) and learning vector quantization (LVQ) neurons can be emulated on this chip (called the OCR-chip). It consists of five processors: four neuron processors interconnected in a ring, each are computing several states of different GBP neurons, and a LVQ processor used to compute the states of the LVQ neurons. Connections between GBP neurons folded on the same processor are implemented in each processor by using an address generator based on modulus m counters. An optical character recognition (OCR) neural network (840 neurons in 4 layers and 800 LVQ neurons) is used as demonstrator.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Application of simple genetic algorithms to sequential circuit test generation Efficient implementations of self-checking multiply and divide arrays A reduced-swing data transmission scheme for resistive bus lines in VLSIs Genesis: a behavioral synthesis system for hierarchical testability Nondeterministic finite-state machines and sequential don't cares
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1