Kostis Triantafyllakis, M. Surligas, George Vardakis, Stefanos Papadakis
{"title":"相位:一种基于随机森林的自动调制分类系统","authors":"Kostis Triantafyllakis, M. Surligas, George Vardakis, Stefanos Papadakis","doi":"10.1109/DySPAN.2017.7920749","DOIUrl":null,"url":null,"abstract":"We propose an architecture that incorporates an automatic modulation classification (AMC) mechanism, assisted by Random Forest machine learning (ML) classifiers. Using this architecture we are able to distinguish a variety of digital and analog modulation schemes under various SNR environments.","PeriodicalId":221877,"journal":{"name":"2017 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Phasma: An automatic modulation classification system based on Random Forest\",\"authors\":\"Kostis Triantafyllakis, M. Surligas, George Vardakis, Stefanos Papadakis\",\"doi\":\"10.1109/DySPAN.2017.7920749\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose an architecture that incorporates an automatic modulation classification (AMC) mechanism, assisted by Random Forest machine learning (ML) classifiers. Using this architecture we are able to distinguish a variety of digital and analog modulation schemes under various SNR environments.\",\"PeriodicalId\":221877,\"journal\":{\"name\":\"2017 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN)\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DySPAN.2017.7920749\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DySPAN.2017.7920749","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Phasma: An automatic modulation classification system based on Random Forest
We propose an architecture that incorporates an automatic modulation classification (AMC) mechanism, assisted by Random Forest machine learning (ML) classifiers. Using this architecture we are able to distinguish a variety of digital and analog modulation schemes under various SNR environments.