{"title":"拓扑局部主成分分析","authors":"Zhiyong Liu, L. Xu","doi":"10.1109/ICONIP.2002.1202840","DOIUrl":null,"url":null,"abstract":"We propose a topological local principal component analysis (PCA) in help of Kohonen's self-organizing maps (SOM). The topological local PCA describes one cluster by one neuron such that it is capable of exploiting both the global topological structure and each local cluster structure. We also investigate a newly proposed self-organizing strategy that can enhance the learning speed, as well as an alternative Stiefel manifold based algorithm to ensure the orthonormality constraint of the local PCA.","PeriodicalId":146553,"journal":{"name":"Proceedings of the 9th International Conference on Neural Information Processing, 2002. ICONIP '02.","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Topological local principal component analysis\",\"authors\":\"Zhiyong Liu, L. Xu\",\"doi\":\"10.1109/ICONIP.2002.1202840\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a topological local principal component analysis (PCA) in help of Kohonen's self-organizing maps (SOM). The topological local PCA describes one cluster by one neuron such that it is capable of exploiting both the global topological structure and each local cluster structure. We also investigate a newly proposed self-organizing strategy that can enhance the learning speed, as well as an alternative Stiefel manifold based algorithm to ensure the orthonormality constraint of the local PCA.\",\"PeriodicalId\":146553,\"journal\":{\"name\":\"Proceedings of the 9th International Conference on Neural Information Processing, 2002. ICONIP '02.\",\"volume\":\"42 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 9th International Conference on Neural Information Processing, 2002. ICONIP '02.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICONIP.2002.1202840\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 9th International Conference on Neural Information Processing, 2002. ICONIP '02.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICONIP.2002.1202840","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

本文提出了一种基于Kohonen自组织映射(SOM)的拓扑局部主成分分析方法。拓扑局部PCA通过一个神经元描述一个聚类,使得它能够同时利用全局拓扑结构和每个局部聚类结构。我们还研究了一种新的自组织策略,可以提高学习速度,以及一种替代的基于Stiefel流形的算法,以确保局部主成分分析的正交性约束。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Topological local principal component analysis
We propose a topological local principal component analysis (PCA) in help of Kohonen's self-organizing maps (SOM). The topological local PCA describes one cluster by one neuron such that it is capable of exploiting both the global topological structure and each local cluster structure. We also investigate a newly proposed self-organizing strategy that can enhance the learning speed, as well as an alternative Stiefel manifold based algorithm to ensure the orthonormality constraint of the local PCA.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hardware neuron models with CMOS for auditory neural networks Extracting latent structures in numerical classification: an investigation using two factor models An application of a progressive neural network technique in the identification of suspension properties of tracked vehicles Discussions of neural network solvers for inverse optimization problems Link between energy and computation in a physical model of Hopfield network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1