一种机器学习驱动的物联网架构,用于预测Covid-19疫情爆发的增长和趋势,以确定高风险地点

C. Kumar. J, M. Arunsi. B, M. A. Majid
{"title":"一种机器学习驱动的物联网架构,用于预测Covid-19疫情爆发的增长和趋势,以确定高风险地点","authors":"C. Kumar. J, M. Arunsi. B, M. A. Majid","doi":"10.1109/LT58159.2023.10092331","DOIUrl":null,"url":null,"abstract":"Covid-19 has had a destructive influence on global economics, social life, education, and technologies. The rise of the Covid-19 pandemic has increased the use of digital tools and technologies for epidemic control. This research uses machine learning (ML) models to identify populated areas and predict the disease's risk and impact. The proposed system requires only details about mask utilization, temperature, and distance between individuals, which helps protect the individual's privacy. The gathered data is transferred to an ML engine in the cloud to determine the risk probability of public areas concerning Covid-19. Extracted data are input for multiple ML techniques such as Random Forest (RF), Decision tree (DT), Naive Bayes classifier(NBC), Neural network(NN), and Support vector machine (SVM). Expectation maximization (EM), K-means, Density, Filtered, and Farthest first (FF) clustering algorithms are applied for clustering. Compared to other algorithms, the K-means produces better superior accuracy. The regression technique is utilized for prediction. The outcomes of several methods are compared, and the most suitable ML algorithms utilized in this study are used to identify high-risk locations. In comparison to other identical architectures, the suggested architecture retains excellent accuracies. It is observed that the time taken to build the model using locally weighted learning(LWL) was 0.02 seconds, and the NN took more time to build, which is 0.90 seconds. To test the model, an LWL algorithm took more time which is 1.73 seconds, and the NN took less time to test, which is 0.02 seconds. The NBC has a 99.38 percent accuracy, the RF classifier has a 97.33 percent accuracy, and the DT has a 94.51 percent accuracy for the same data set. These algorithms have significant possibilities for predicting the likelihood of crowd risks of Covid-19 in a public space. This approach generates automatic notifications to concerned government authorities in any aberrant detection. This study is likely to aid researchers in modeling healthcare systems and spur additional research into innovative technology.","PeriodicalId":142898,"journal":{"name":"2023 20th Learning and Technology Conference (L&T)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Machine Learning-driven IoT Architecture for Predicting the Growth and Trend of Covid-19 Epidemic Outbreaks to Identify High-risk Locations\",\"authors\":\"C. Kumar. J, M. Arunsi. B, M. A. Majid\",\"doi\":\"10.1109/LT58159.2023.10092331\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Covid-19 has had a destructive influence on global economics, social life, education, and technologies. The rise of the Covid-19 pandemic has increased the use of digital tools and technologies for epidemic control. This research uses machine learning (ML) models to identify populated areas and predict the disease's risk and impact. The proposed system requires only details about mask utilization, temperature, and distance between individuals, which helps protect the individual's privacy. The gathered data is transferred to an ML engine in the cloud to determine the risk probability of public areas concerning Covid-19. Extracted data are input for multiple ML techniques such as Random Forest (RF), Decision tree (DT), Naive Bayes classifier(NBC), Neural network(NN), and Support vector machine (SVM). Expectation maximization (EM), K-means, Density, Filtered, and Farthest first (FF) clustering algorithms are applied for clustering. Compared to other algorithms, the K-means produces better superior accuracy. The regression technique is utilized for prediction. The outcomes of several methods are compared, and the most suitable ML algorithms utilized in this study are used to identify high-risk locations. In comparison to other identical architectures, the suggested architecture retains excellent accuracies. It is observed that the time taken to build the model using locally weighted learning(LWL) was 0.02 seconds, and the NN took more time to build, which is 0.90 seconds. To test the model, an LWL algorithm took more time which is 1.73 seconds, and the NN took less time to test, which is 0.02 seconds. The NBC has a 99.38 percent accuracy, the RF classifier has a 97.33 percent accuracy, and the DT has a 94.51 percent accuracy for the same data set. These algorithms have significant possibilities for predicting the likelihood of crowd risks of Covid-19 in a public space. This approach generates automatic notifications to concerned government authorities in any aberrant detection. This study is likely to aid researchers in modeling healthcare systems and spur additional research into innovative technology.\",\"PeriodicalId\":142898,\"journal\":{\"name\":\"2023 20th Learning and Technology Conference (L&T)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 20th Learning and Technology Conference (L&T)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LT58159.2023.10092331\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 20th Learning and Technology Conference (L&T)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LT58159.2023.10092331","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

新冠肺炎疫情对全球经济、社会生活、教育和技术产生了破坏性影响。Covid-19大流行的兴起增加了数字工具和技术在流行病控制中的使用。这项研究使用机器学习(ML)模型来识别人口稠密的地区,并预测疾病的风险和影响。该系统只需要关于口罩使用、温度和个人之间距离的详细信息,有助于保护个人隐私。收集到的数据被传输到云中的ML引擎,以确定公共区域与Covid-19相关的风险概率。提取的数据被输入到多种机器学习技术中,如随机森林(RF)、决策树(DT)、朴素贝叶斯分类器(NBC)、神经网络(NN)和支持向量机(SVM)。应用期望最大化(EM)、K-means、密度、过滤和最远优先(FF)聚类算法进行聚类。与其他算法相比,K-means的准确率更高。利用回归技术进行预测。比较几种方法的结果,并使用本研究中最合适的ML算法来识别高风险部位。与其他相同的体系结构相比,建议的体系结构保持了出色的准确性。观察到,使用局部加权学习(LWL)构建模型所需的时间为0.02秒,而神经网络的构建时间为0.90秒。为了测试模型,LWL算法的测试时间更长,为1.73秒,而NN的测试时间更短,为0.02秒。对于相同的数据集,NBC分类器的准确率为99.38%,RF分类器的准确率为97.33%,DT分类器的准确率为94.51%。这些算法在预测公共场所人群感染Covid-19的可能性方面具有很大的可能性。这种方法在任何异常检测中自动向有关政府当局发出通知。这项研究可能有助于研究人员对医疗保健系统进行建模,并刺激对创新技术的进一步研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Machine Learning-driven IoT Architecture for Predicting the Growth and Trend of Covid-19 Epidemic Outbreaks to Identify High-risk Locations
Covid-19 has had a destructive influence on global economics, social life, education, and technologies. The rise of the Covid-19 pandemic has increased the use of digital tools and technologies for epidemic control. This research uses machine learning (ML) models to identify populated areas and predict the disease's risk and impact. The proposed system requires only details about mask utilization, temperature, and distance between individuals, which helps protect the individual's privacy. The gathered data is transferred to an ML engine in the cloud to determine the risk probability of public areas concerning Covid-19. Extracted data are input for multiple ML techniques such as Random Forest (RF), Decision tree (DT), Naive Bayes classifier(NBC), Neural network(NN), and Support vector machine (SVM). Expectation maximization (EM), K-means, Density, Filtered, and Farthest first (FF) clustering algorithms are applied for clustering. Compared to other algorithms, the K-means produces better superior accuracy. The regression technique is utilized for prediction. The outcomes of several methods are compared, and the most suitable ML algorithms utilized in this study are used to identify high-risk locations. In comparison to other identical architectures, the suggested architecture retains excellent accuracies. It is observed that the time taken to build the model using locally weighted learning(LWL) was 0.02 seconds, and the NN took more time to build, which is 0.90 seconds. To test the model, an LWL algorithm took more time which is 1.73 seconds, and the NN took less time to test, which is 0.02 seconds. The NBC has a 99.38 percent accuracy, the RF classifier has a 97.33 percent accuracy, and the DT has a 94.51 percent accuracy for the same data set. These algorithms have significant possibilities for predicting the likelihood of crowd risks of Covid-19 in a public space. This approach generates automatic notifications to concerned government authorities in any aberrant detection. This study is likely to aid researchers in modeling healthcare systems and spur additional research into innovative technology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A proposed Array of Quadrifilar Helix Antenna for CubeSat applications Detection of Hydrogen Leakage Using Different Machine Learning Techniques The Future Metavertainment Application development Blockchain in Healthcare for Achieving Patients’ Privacy Predicting COVID-19 Mortalities for Patients with Special Health Conditions Using an Agent-Based Model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1