个人搜索系统中的参数调整

S. Chen, Xuanhui Wang, Zhen Qin, Donald Metzler
{"title":"个人搜索系统中的参数调整","authors":"S. Chen, Xuanhui Wang, Zhen Qin, Donald Metzler","doi":"10.1145/3336191.3371820","DOIUrl":null,"url":null,"abstract":"Retrieval effectiveness in information retrieval systems is heavily dependent on how various parameters are tuned. One option to find these parameters is to run multiple online experiments and using a parameter sweep approach in order to optimize the search system. There are multiple downsides of this approach, mainly that it may lead to a poor experience for users. Another option is to do offline evaluation, which can act as a safeguard against potential quality issues. Offline evaluation requires a validation set of data that can be benchmarked against different parameter settings. However, for search over personal corpora, e.g. email and file search, it is impractical and often impossible to get a complete representative validation set, due to the inability to save raw queries and document information. In this work, we show how to do offline parameter tuning with only a partial validation set. In addition, we demonstrate how to do parameter tuning in the cases when we have complete knowledge of the internal implementation of the search system (white-box tuning), as well as the case where we have only partial knowledge (grey-box tuning). This has allowed us to do offline parameter tuning in a privacy-sensitive manner.","PeriodicalId":319008,"journal":{"name":"Proceedings of the 13th International Conference on Web Search and Data Mining","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Parameter Tuning in Personal Search Systems\",\"authors\":\"S. Chen, Xuanhui Wang, Zhen Qin, Donald Metzler\",\"doi\":\"10.1145/3336191.3371820\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Retrieval effectiveness in information retrieval systems is heavily dependent on how various parameters are tuned. One option to find these parameters is to run multiple online experiments and using a parameter sweep approach in order to optimize the search system. There are multiple downsides of this approach, mainly that it may lead to a poor experience for users. Another option is to do offline evaluation, which can act as a safeguard against potential quality issues. Offline evaluation requires a validation set of data that can be benchmarked against different parameter settings. However, for search over personal corpora, e.g. email and file search, it is impractical and often impossible to get a complete representative validation set, due to the inability to save raw queries and document information. In this work, we show how to do offline parameter tuning with only a partial validation set. In addition, we demonstrate how to do parameter tuning in the cases when we have complete knowledge of the internal implementation of the search system (white-box tuning), as well as the case where we have only partial knowledge (grey-box tuning). This has allowed us to do offline parameter tuning in a privacy-sensitive manner.\",\"PeriodicalId\":319008,\"journal\":{\"name\":\"Proceedings of the 13th International Conference on Web Search and Data Mining\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 13th International Conference on Web Search and Data Mining\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3336191.3371820\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 13th International Conference on Web Search and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3336191.3371820","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

信息检索系统的检索效率很大程度上取决于各种参数的调优方式。找到这些参数的一种选择是运行多个在线实验,并使用参数扫描方法来优化搜索系统。这种方法有很多缺点,主要是它可能会给用户带来糟糕的体验。另一个选择是进行离线评估,这可以作为对潜在质量问题的保障。离线评估需要一组验证数据,这些数据可以针对不同的参数设置进行基准测试。然而,对于个人语料库的搜索,例如电子邮件和文件搜索,由于无法保存原始查询和文档信息,获得完整的代表性验证集是不切实际的,而且通常是不可能的。在本文中,我们将展示如何仅使用部分验证集进行离线参数调优。此外,我们还演示了在我们完全了解搜索系统的内部实现(白盒调优)以及我们只有部分知识(灰盒调优)的情况下如何进行参数调优。这使我们能够以隐私敏感的方式进行离线参数调优。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Parameter Tuning in Personal Search Systems
Retrieval effectiveness in information retrieval systems is heavily dependent on how various parameters are tuned. One option to find these parameters is to run multiple online experiments and using a parameter sweep approach in order to optimize the search system. There are multiple downsides of this approach, mainly that it may lead to a poor experience for users. Another option is to do offline evaluation, which can act as a safeguard against potential quality issues. Offline evaluation requires a validation set of data that can be benchmarked against different parameter settings. However, for search over personal corpora, e.g. email and file search, it is impractical and often impossible to get a complete representative validation set, due to the inability to save raw queries and document information. In this work, we show how to do offline parameter tuning with only a partial validation set. In addition, we demonstrate how to do parameter tuning in the cases when we have complete knowledge of the internal implementation of the search system (white-box tuning), as well as the case where we have only partial knowledge (grey-box tuning). This has allowed us to do offline parameter tuning in a privacy-sensitive manner.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Recurrent Memory Reasoning Network for Expert Finding in Community Question Answering Joint Recognition of Names and Publications in Academic Homepages LouvainNE Enhancing Re-finding Behavior with External Memories for Personalized Search Temporal Pattern of Retweet(s) Help to Maximize Information Diffusion in Twitter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1