{"title":"多智能体动态系统的避碰与路径跟踪","authors":"I. Prodan, Sorin Olaru, C. Stoica, S. Niculescu","doi":"10.1109/ICCAS.2010.5670117","DOIUrl":null,"url":null,"abstract":"This paper deals with collision avoidance problems while following an optimal trajectory for a group of agents operating in open space. The basic idea is to use the Model Predictive Control (MPC) technique to solve a realtime optimization problem with non-convex constraints over a finite time horizon. Both centralized and decentralized MPC formulations are presented. In a second stage it is shown that velocity constraints can be added to the collision avoidance restrictions in the optimization problem. Following a specified trajectory, the agents move in the same direction and end up eventually in a particular formation. A primer ingredient in the control design is the generation of a flat trajectory, planned in the physical open space. This allows the agents to maneuver successfully in a dynamic environment and to reach a common objective.","PeriodicalId":158687,"journal":{"name":"ICCAS 2010","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Collision avoidance and path following for multi-agent dynamical systems\",\"authors\":\"I. Prodan, Sorin Olaru, C. Stoica, S. Niculescu\",\"doi\":\"10.1109/ICCAS.2010.5670117\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper deals with collision avoidance problems while following an optimal trajectory for a group of agents operating in open space. The basic idea is to use the Model Predictive Control (MPC) technique to solve a realtime optimization problem with non-convex constraints over a finite time horizon. Both centralized and decentralized MPC formulations are presented. In a second stage it is shown that velocity constraints can be added to the collision avoidance restrictions in the optimization problem. Following a specified trajectory, the agents move in the same direction and end up eventually in a particular formation. A primer ingredient in the control design is the generation of a flat trajectory, planned in the physical open space. This allows the agents to maneuver successfully in a dynamic environment and to reach a common objective.\",\"PeriodicalId\":158687,\"journal\":{\"name\":\"ICCAS 2010\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICCAS 2010\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCAS.2010.5670117\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICCAS 2010","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAS.2010.5670117","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Collision avoidance and path following for multi-agent dynamical systems
This paper deals with collision avoidance problems while following an optimal trajectory for a group of agents operating in open space. The basic idea is to use the Model Predictive Control (MPC) technique to solve a realtime optimization problem with non-convex constraints over a finite time horizon. Both centralized and decentralized MPC formulations are presented. In a second stage it is shown that velocity constraints can be added to the collision avoidance restrictions in the optimization problem. Following a specified trajectory, the agents move in the same direction and end up eventually in a particular formation. A primer ingredient in the control design is the generation of a flat trajectory, planned in the physical open space. This allows the agents to maneuver successfully in a dynamic environment and to reach a common objective.