分组b样条窗口用于功率谱密度估计

L. Stanciu, C. Stanciu
{"title":"分组b样条窗口用于功率谱密度估计","authors":"L. Stanciu, C. Stanciu","doi":"10.1109/ISSCS.2013.6651176","DOIUrl":null,"url":null,"abstract":"The power spectral density of a signal can be estimated most accurately by using a window that can attain a narrower main lobe width and a higher decay rate. Conventional windows are able to control these characteristics by only one parameter, so there is a trade-off problem. To reduce the effect of spectral leakage, a window function can be used whose amplitude tapers smoothly and gradually toward zero at both ends. The spectral methods are accurate for smooth functions and we propose using grouped B-spline windows with three control parameters for power spectral density estimation and analyze its characteristics.","PeriodicalId":260263,"journal":{"name":"International Symposium on Signals, Circuits and Systems ISSCS2013","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Grouped B-spline windows for power spectral density estimation\",\"authors\":\"L. Stanciu, C. Stanciu\",\"doi\":\"10.1109/ISSCS.2013.6651176\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The power spectral density of a signal can be estimated most accurately by using a window that can attain a narrower main lobe width and a higher decay rate. Conventional windows are able to control these characteristics by only one parameter, so there is a trade-off problem. To reduce the effect of spectral leakage, a window function can be used whose amplitude tapers smoothly and gradually toward zero at both ends. The spectral methods are accurate for smooth functions and we propose using grouped B-spline windows with three control parameters for power spectral density estimation and analyze its characteristics.\",\"PeriodicalId\":260263,\"journal\":{\"name\":\"International Symposium on Signals, Circuits and Systems ISSCS2013\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Symposium on Signals, Circuits and Systems ISSCS2013\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSCS.2013.6651176\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Signals, Circuits and Systems ISSCS2013","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCS.2013.6651176","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

通过使用能够获得较窄的主瓣宽度和较高的衰减率的窗口,可以最准确地估计信号的功率谱密度。传统的窗口只能通过一个参数来控制这些特性,因此存在权衡问题。为了减小光谱泄漏的影响,可以使用振幅在两端逐渐趋于零的窗函数。本文提出了基于分组b样条窗和三个控制参数的功率谱密度估计方法,并对其特性进行了分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Grouped B-spline windows for power spectral density estimation
The power spectral density of a signal can be estimated most accurately by using a window that can attain a narrower main lobe width and a higher decay rate. Conventional windows are able to control these characteristics by only one parameter, so there is a trade-off problem. To reduce the effect of spectral leakage, a window function can be used whose amplitude tapers smoothly and gradually toward zero at both ends. The spectral methods are accurate for smooth functions and we propose using grouped B-spline windows with three control parameters for power spectral density estimation and analyze its characteristics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Autor index Dynamic time warping for speech recognition with training part to reduce the computation A face recognition system based on a Kinect sensor and Windows Azure cloud technology An efficient GSC VSS-APA beamformer with integrated log-energy based VAD for noise reduction in speech reinforcement systems RNSIC-1 based wind energy conversion
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1