神经形态计算通信网络中异构尖峰神经网络产生的带宽负载和延迟估计网络模拟器

R. Kleijnen, M. Robens, M. Schiek, S. Waasen
{"title":"神经形态计算通信网络中异构尖峰神经网络产生的带宽负载和延迟估计网络模拟器","authors":"R. Kleijnen, M. Robens, M. Schiek, S. Waasen","doi":"10.1109/MCSoC51149.2021.00054","DOIUrl":null,"url":null,"abstract":"Observing long-term learning effects caused by neuron activity in the human brain in vivo, over a period of weeks, months, or years, is impractical. Over the last decade, the field of neuromorphic computing hardware has grown significantly, i.e. SpiNNaker, BrainScaleS and Neurogrid. These novel many-core simulation platforms offer a practical alternative to study neuron behaviour in the brain at an accelerated rate, with a high level of detail. However, they do by far not reach human brain scales yet as in particular the massive amount of spike communication turns out to be a bottleneck. In this paper, we introduce a network simulator specifically developed for the analysis of bandwidth load and latency of different network topologies and communication protocols in neuromorphic computing communication networks in high detail. Unique to this simulator, compared to state of the art network models and simulators, is its ability to simulate the impact of heterogeneous neural connectivity by different models as well as the evaluation of neuron mapping algorithms. We crosscheck the simulator by comparing the results of a run using a homogeneous neural network to the bandwidth load resulting from comparable works, but simultaneously show the increased level of detail reached with our simulator. Finally, we show the impact heterogeneous connectivity can have on the bandwidth and how different neuron mapping algorithms can enhance this effect.","PeriodicalId":166811,"journal":{"name":"2021 IEEE 14th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC)","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A Network Simulator for the Estimation of Bandwidth Load and Latency Created by Heterogeneous Spiking Neural Networks on Neuromorphic Computing Communication Networks\",\"authors\":\"R. Kleijnen, M. Robens, M. Schiek, S. Waasen\",\"doi\":\"10.1109/MCSoC51149.2021.00054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Observing long-term learning effects caused by neuron activity in the human brain in vivo, over a period of weeks, months, or years, is impractical. Over the last decade, the field of neuromorphic computing hardware has grown significantly, i.e. SpiNNaker, BrainScaleS and Neurogrid. These novel many-core simulation platforms offer a practical alternative to study neuron behaviour in the brain at an accelerated rate, with a high level of detail. However, they do by far not reach human brain scales yet as in particular the massive amount of spike communication turns out to be a bottleneck. In this paper, we introduce a network simulator specifically developed for the analysis of bandwidth load and latency of different network topologies and communication protocols in neuromorphic computing communication networks in high detail. Unique to this simulator, compared to state of the art network models and simulators, is its ability to simulate the impact of heterogeneous neural connectivity by different models as well as the evaluation of neuron mapping algorithms. We crosscheck the simulator by comparing the results of a run using a homogeneous neural network to the bandwidth load resulting from comparable works, but simultaneously show the increased level of detail reached with our simulator. Finally, we show the impact heterogeneous connectivity can have on the bandwidth and how different neuron mapping algorithms can enhance this effect.\",\"PeriodicalId\":166811,\"journal\":{\"name\":\"2021 IEEE 14th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC)\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 14th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MCSoC51149.2021.00054\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 14th International Symposium on Embedded Multicore/Many-core Systems-on-Chip (MCSoC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MCSoC51149.2021.00054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

观察人体大脑中神经元活动在数周、数月或数年内引起的长期学习效果是不切实际的。在过去的十年中,神经形态计算硬件领域有了显著的发展,如SpiNNaker、BrainScaleS和Neurogrid。这些新颖的多核模拟平台提供了一种实用的替代方案,以加速研究大脑中的神经元行为,具有高水平的细节。然而,到目前为止,它们还没有达到人脑的规模,特别是大量的尖峰通信成为瓶颈。本文介绍了一种网络模拟器,专门用于分析神经形态计算通信网络中不同网络拓扑和通信协议的带宽负载和延迟。与最先进的网络模型和模拟器相比,这个模拟器的独特之处在于,它能够通过不同的模型模拟异构神经连接的影响,以及神经元映射算法的评估。我们通过将使用同质神经网络的运行结果与同类工作产生的带宽负载进行比较来交叉检查模拟器,但同时显示了我们的模拟器所达到的细节水平的提高。最后,我们展示了异构连接对带宽的影响,以及不同的神经元映射算法如何增强这种影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Network Simulator for the Estimation of Bandwidth Load and Latency Created by Heterogeneous Spiking Neural Networks on Neuromorphic Computing Communication Networks
Observing long-term learning effects caused by neuron activity in the human brain in vivo, over a period of weeks, months, or years, is impractical. Over the last decade, the field of neuromorphic computing hardware has grown significantly, i.e. SpiNNaker, BrainScaleS and Neurogrid. These novel many-core simulation platforms offer a practical alternative to study neuron behaviour in the brain at an accelerated rate, with a high level of detail. However, they do by far not reach human brain scales yet as in particular the massive amount of spike communication turns out to be a bottleneck. In this paper, we introduce a network simulator specifically developed for the analysis of bandwidth load and latency of different network topologies and communication protocols in neuromorphic computing communication networks in high detail. Unique to this simulator, compared to state of the art network models and simulators, is its ability to simulate the impact of heterogeneous neural connectivity by different models as well as the evaluation of neuron mapping algorithms. We crosscheck the simulator by comparing the results of a run using a homogeneous neural network to the bandwidth load resulting from comparable works, but simultaneously show the increased level of detail reached with our simulator. Finally, we show the impact heterogeneous connectivity can have on the bandwidth and how different neuron mapping algorithms can enhance this effect.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Distance Estimation Method to Railway Crossing Using Warning Signs FPGA-Based Implementation of the Stereo Matching Algorithm Using High-Level Synthesis A Low Cost and Portable Mini Motor Car System with a BNN Accelerator on FPGA Enhancing Autotuning Capability with a History Database UI Method to Support Knowledge Creation in Hybrid Museum Experience
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1