基于数字图像相关和透镜畸变校正的平面内位移测量

S. Yoneyama, A. Kitagawa, Koji Kitamura, H. Kikuta
{"title":"基于数字图像相关和透镜畸变校正的平面内位移测量","authors":"S. Yoneyama, A. Kitagawa, Koji Kitamura, H. Kikuta","doi":"10.1299/JSMEA.49.458","DOIUrl":null,"url":null,"abstract":"Two-dimensional displacement measurement using digital image correlation with lens distortion correction is described in this paper. A single cross-grating is used as a calibration reference. Using two-dimensional Fourier transform, the phases of the grating pattern are analyzed and lens distortion distribution is obtained from the unwrapped phase maps. After detecting lens distortion, the coefficients of lens distortion are determined using the least-squares method. Then, the displacement distributions without the lens distortion are obtained. The effectiveness of the method is demonstrated by applying the proposed method to the rigid body translation test and the uniaxial tension test. The results show that the proposed distortion correction method removes the effect of lens distortion from the measured displacements. By the proposed method, accurate measurements can be performed even if images are deformed by lens distortion.","PeriodicalId":170519,"journal":{"name":"Jsme International Journal Series A-solid Mechanics and Material Engineering","volume":"159 5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"71","resultStr":"{\"title\":\"In-Plane Displacement Measurement Using Digital Image Correlation with Lens Distortion Correction\",\"authors\":\"S. Yoneyama, A. Kitagawa, Koji Kitamura, H. Kikuta\",\"doi\":\"10.1299/JSMEA.49.458\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Two-dimensional displacement measurement using digital image correlation with lens distortion correction is described in this paper. A single cross-grating is used as a calibration reference. Using two-dimensional Fourier transform, the phases of the grating pattern are analyzed and lens distortion distribution is obtained from the unwrapped phase maps. After detecting lens distortion, the coefficients of lens distortion are determined using the least-squares method. Then, the displacement distributions without the lens distortion are obtained. The effectiveness of the method is demonstrated by applying the proposed method to the rigid body translation test and the uniaxial tension test. The results show that the proposed distortion correction method removes the effect of lens distortion from the measured displacements. By the proposed method, accurate measurements can be performed even if images are deformed by lens distortion.\",\"PeriodicalId\":170519,\"journal\":{\"name\":\"Jsme International Journal Series A-solid Mechanics and Material Engineering\",\"volume\":\"159 5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"71\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jsme International Journal Series A-solid Mechanics and Material Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1299/JSMEA.49.458\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jsme International Journal Series A-solid Mechanics and Material Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1299/JSMEA.49.458","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 71

摘要

本文介绍了一种基于数字图像相关和透镜畸变校正的二维位移测量方法。使用单个交叉光栅作为校准基准。利用二维傅里叶变换,分析了光栅图样的相位,并从解包裹的相位图中得到了透镜畸变分布。在检测到透镜畸变后,利用最小二乘法确定透镜畸变系数。然后,得到了不考虑透镜畸变的位移分布。将该方法应用于刚体平移试验和单轴拉伸试验,验证了该方法的有效性。结果表明,所提出的畸变校正方法消除了透镜畸变对测量位移的影响。通过提出的方法,即使图像因透镜畸变而变形,也可以进行精确的测量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
In-Plane Displacement Measurement Using Digital Image Correlation with Lens Distortion Correction
Two-dimensional displacement measurement using digital image correlation with lens distortion correction is described in this paper. A single cross-grating is used as a calibration reference. Using two-dimensional Fourier transform, the phases of the grating pattern are analyzed and lens distortion distribution is obtained from the unwrapped phase maps. After detecting lens distortion, the coefficients of lens distortion are determined using the least-squares method. Then, the displacement distributions without the lens distortion are obtained. The effectiveness of the method is demonstrated by applying the proposed method to the rigid body translation test and the uniaxial tension test. The results show that the proposed distortion correction method removes the effect of lens distortion from the measured displacements. By the proposed method, accurate measurements can be performed even if images are deformed by lens distortion.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evaluation of Initiation of the Interfacial Debonding in Single Fiber Composite Two Back Stress Hardening Models in Rate Independent Rigid Plastic Deformation Two Collinear Interface Cracks between Two Dissimilar Functionally Graded Piezoelectric/Piezomagnetic Material Layers under Anti-Plane Shear Loading Investigation the Dynamic Interaction between Two Collinear Cracks in the Functionally Graded Piezoelectric Materials Subjected to the Harmonic Anti-Plane Shear Stress Waves by Using the Non-Local Theory Development of a Finite Element Contact Analysis Algorithm to Pass the Patch Test
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1