提供QRS起跳和偏移的超高频ECG深度学习心跳检测器

Zuzana Koscova, R. Smíšek, P. Nejedly, J. Halámek, P. Jurák, P. Leinveber, K. Čurila, F. Plesinger
{"title":"提供QRS起跳和偏移的超高频ECG深度学习心跳检测器","authors":"Zuzana Koscova, R. Smíšek, P. Nejedly, J. Halámek, P. Jurák, P. Leinveber, K. Čurila, F. Plesinger","doi":"10.22489/CinC.2022.230","DOIUrl":null,"url":null,"abstract":"Background: QRS duration is a common measure linked to conduction abnormalities in heart ventricles. Aim: We propose a QRS detector, further able to locate QRS onset and offset in one inference step. Method: A 3-second window from 12 leads of UHF ECG signal (5 kHz) is standardized and processed with the UNet network. The output is an array of QRS probabilities, further processed with probability and distance criterion, allowing us to determine duration and final location of QRSs. Results: The model was trained on 2,250 ECG recordings from the FNUSA-ICRC hospital (Brno, Czechia). The model was tested on 5 different datasets: FNUSA, a dataset from FNKV hospital (Prague, Czechia), and three public datasets (Cipa, Strict LBBB, LUDB). Regarding QRS duration, results showed a mean absolute error of 13.99 ± 4.29 ms between annotated durations and the output of the proposed model. A QRS detection F-score was 0.98 ± 0.01. Conclusion: Our results indicate high QRS detection performance on both spontaneous and paced UHF ECG data. We also showed that QRS detection and duration could be combined in one deep learning algorithm.","PeriodicalId":117840,"journal":{"name":"2022 Computing in Cardiology (CinC)","volume":"498 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultra-High Frequency ECG Deep-Learning Beat Detector Delivering QRS Onsets and Offsets\",\"authors\":\"Zuzana Koscova, R. Smíšek, P. Nejedly, J. Halámek, P. Jurák, P. Leinveber, K. Čurila, F. Plesinger\",\"doi\":\"10.22489/CinC.2022.230\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background: QRS duration is a common measure linked to conduction abnormalities in heart ventricles. Aim: We propose a QRS detector, further able to locate QRS onset and offset in one inference step. Method: A 3-second window from 12 leads of UHF ECG signal (5 kHz) is standardized and processed with the UNet network. The output is an array of QRS probabilities, further processed with probability and distance criterion, allowing us to determine duration and final location of QRSs. Results: The model was trained on 2,250 ECG recordings from the FNUSA-ICRC hospital (Brno, Czechia). The model was tested on 5 different datasets: FNUSA, a dataset from FNKV hospital (Prague, Czechia), and three public datasets (Cipa, Strict LBBB, LUDB). Regarding QRS duration, results showed a mean absolute error of 13.99 ± 4.29 ms between annotated durations and the output of the proposed model. A QRS detection F-score was 0.98 ± 0.01. Conclusion: Our results indicate high QRS detection performance on both spontaneous and paced UHF ECG data. We also showed that QRS detection and duration could be combined in one deep learning algorithm.\",\"PeriodicalId\":117840,\"journal\":{\"name\":\"2022 Computing in Cardiology (CinC)\",\"volume\":\"498 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 Computing in Cardiology (CinC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22489/CinC.2022.230\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Computing in Cardiology (CinC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22489/CinC.2022.230","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

背景:QRS持续时间是一种与心室传导异常相关的常见指标。目的:我们提出了一种QRS检测器,进一步能够在一个推理步骤中定位QRS的起始和偏移。方法:对5 kHz超高频心电信号12导联的3秒窗口进行标准化处理,并采用UNet网络进行处理。输出是QRS概率的数组,用概率和距离准则进一步处理,使我们能够确定QRS的持续时间和最终位置。结果:该模型接受了来自fnusa -红十字国际委员会医院(捷克布尔诺)的2250份心电图记录的训练。该模型在5个不同的数据集上进行了测试:FNUSA,来自FNKV医院(布拉格,捷克)的数据集,以及三个公共数据集(Cipa, Strict LBBB, LUDB)。关于QRS持续时间,结果显示标注的持续时间与所提出模型的输出之间的平均绝对误差为13.99±4.29 ms。QRS检测f值为0.98±0.01。结论:我们的研究结果表明,无论是自发的还是有节奏的UHF心电数据,QRS检测都有很高的性能。我们还表明,QRS检测和持续时间可以结合在一个深度学习算法中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Ultra-High Frequency ECG Deep-Learning Beat Detector Delivering QRS Onsets and Offsets
Background: QRS duration is a common measure linked to conduction abnormalities in heart ventricles. Aim: We propose a QRS detector, further able to locate QRS onset and offset in one inference step. Method: A 3-second window from 12 leads of UHF ECG signal (5 kHz) is standardized and processed with the UNet network. The output is an array of QRS probabilities, further processed with probability and distance criterion, allowing us to determine duration and final location of QRSs. Results: The model was trained on 2,250 ECG recordings from the FNUSA-ICRC hospital (Brno, Czechia). The model was tested on 5 different datasets: FNUSA, a dataset from FNKV hospital (Prague, Czechia), and three public datasets (Cipa, Strict LBBB, LUDB). Regarding QRS duration, results showed a mean absolute error of 13.99 ± 4.29 ms between annotated durations and the output of the proposed model. A QRS detection F-score was 0.98 ± 0.01. Conclusion: Our results indicate high QRS detection performance on both spontaneous and paced UHF ECG data. We also showed that QRS detection and duration could be combined in one deep learning algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Nonlinear Dynamic Response of Intrapartum Fetal Heart Rate to Uterine Pressure Heart Pulse Demodulation from Emfit Mattress Sensor Using Spectral and Source Separation Techniques Automated Algorithm for QRS Detection in Cardiac Arrest Patients with PEA Extraction Algorithm for Morphologically Preserved Non-Invasive Multi-Channel Fetal ECG Improved Pulse Pressure Estimation Based on Imaging Photoplethysmographic Signals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1