D. Agonafer, J. Palko, Y. Won, K. Lopez, Thomas J. Dusseault, Julie Gires, M. Asheghi, J. Santiago, K. Goodson
{"title":"相分离微流体研究进展","authors":"D. Agonafer, J. Palko, Y. Won, K. Lopez, Thomas J. Dusseault, Julie Gires, M. Asheghi, J. Santiago, K. Goodson","doi":"10.1109/CSICS.2014.6978575","DOIUrl":null,"url":null,"abstract":"High power density GaN HEMT technology can increase the capability of defense electronics systems with the reduction of CSWaP. However, thermal limitations have currently limited the inherent capabilities of this technology where transistor-level power densities that exceed 10 kW/cm2 are electrically feasible. This paper introduces the concept of an evaporative microcooling device utilizing some of the current two-phase vapor separation technologies currently being developed for water and dielectric liquids.","PeriodicalId":309722,"journal":{"name":"2014 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Progress on Phase Separation Microfluidics\",\"authors\":\"D. Agonafer, J. Palko, Y. Won, K. Lopez, Thomas J. Dusseault, Julie Gires, M. Asheghi, J. Santiago, K. Goodson\",\"doi\":\"10.1109/CSICS.2014.6978575\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High power density GaN HEMT technology can increase the capability of defense electronics systems with the reduction of CSWaP. However, thermal limitations have currently limited the inherent capabilities of this technology where transistor-level power densities that exceed 10 kW/cm2 are electrically feasible. This paper introduces the concept of an evaporative microcooling device utilizing some of the current two-phase vapor separation technologies currently being developed for water and dielectric liquids.\",\"PeriodicalId\":309722,\"journal\":{\"name\":\"2014 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSICS.2014.6978575\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSICS.2014.6978575","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
High power density GaN HEMT technology can increase the capability of defense electronics systems with the reduction of CSWaP. However, thermal limitations have currently limited the inherent capabilities of this technology where transistor-level power densities that exceed 10 kW/cm2 are electrically feasible. This paper introduces the concept of an evaporative microcooling device utilizing some of the current two-phase vapor separation technologies currently being developed for water and dielectric liquids.