一种SMD引脚定位方法

Nathan Jessurun, Jacob Harrison, M. Tehranipoor, N. Asadizanjani
{"title":"一种SMD引脚定位方法","authors":"Nathan Jessurun, Jacob Harrison, M. Tehranipoor, N. Asadizanjani","doi":"10.1109/IPFA55383.2022.9915720","DOIUrl":null,"url":null,"abstract":"Automated optical inspection (AOI) is used to verify quality of printed circuit board (PCB) assembly and has been proposed for detecting counterfeit components and malicious \"trojan\" PCB modifications. Component pin localization and characterization is an important step in both of these processes. We present PinPoint: a computer vision algorithm which extracts pin information from surface-mount device (SMD) contours. PinPoint is robust against contour noise, component size, and package type. We evaluate PinPoint against a sample of SMD contours and show that it achieves remarkable performance. Our algorithm could serve as an efficient pin localization step in traditional assembly quality checks and can support future efforts to extract expensive-to-forge characteristics of SMD packages to improve optical assurance.","PeriodicalId":378702,"journal":{"name":"2022 IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA)","volume":"85 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"PinPoint: An SMD Pin Localization Method\",\"authors\":\"Nathan Jessurun, Jacob Harrison, M. Tehranipoor, N. Asadizanjani\",\"doi\":\"10.1109/IPFA55383.2022.9915720\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Automated optical inspection (AOI) is used to verify quality of printed circuit board (PCB) assembly and has been proposed for detecting counterfeit components and malicious \\\"trojan\\\" PCB modifications. Component pin localization and characterization is an important step in both of these processes. We present PinPoint: a computer vision algorithm which extracts pin information from surface-mount device (SMD) contours. PinPoint is robust against contour noise, component size, and package type. We evaluate PinPoint against a sample of SMD contours and show that it achieves remarkable performance. Our algorithm could serve as an efficient pin localization step in traditional assembly quality checks and can support future efforts to extract expensive-to-forge characteristics of SMD packages to improve optical assurance.\",\"PeriodicalId\":378702,\"journal\":{\"name\":\"2022 IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA)\",\"volume\":\"85 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IPFA55383.2022.9915720\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPFA55383.2022.9915720","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

自动光学检测(AOI)用于验证印刷电路板(PCB)组件的质量,并已被提议用于检测假冒组件和恶意“特洛伊木马”PCB修改。元件引脚定位和表征是这两个过程中的重要步骤。我们提出了一种从表面贴装器件(SMD)轮廓中提取引脚信息的计算机视觉算法。PinPoint对轮廓噪声、组件尺寸和封装类型都具有鲁棒性。我们对SMD轮廓样品进行了评估,并表明它实现了卓越的性能。我们的算法可以作为传统组装质量检查中有效的引脚定位步骤,并可以支持未来提取SMD封装昂贵的锻造特性以提高光学保证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PinPoint: An SMD Pin Localization Method
Automated optical inspection (AOI) is used to verify quality of printed circuit board (PCB) assembly and has been proposed for detecting counterfeit components and malicious "trojan" PCB modifications. Component pin localization and characterization is an important step in both of these processes. We present PinPoint: a computer vision algorithm which extracts pin information from surface-mount device (SMD) contours. PinPoint is robust against contour noise, component size, and package type. We evaluate PinPoint against a sample of SMD contours and show that it achieves remarkable performance. Our algorithm could serve as an efficient pin localization step in traditional assembly quality checks and can support future efforts to extract expensive-to-forge characteristics of SMD packages to improve optical assurance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The effects of solid-state and hydrothermal synthesis methods of BaTiO3 on the reliability of multilayer ceramic capacitors Hybrid Unsupervised Clustering for Pretext Distribution Learning in IC Image Analysis Chlorine effect on copper bonding wire reliability Automated Defect Classification In Semiconductor Devices Using Deep Learning Networks Interfacial Adhesion Strength of Group IV-VI Thin Film Deposited on Silicon Nitride
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1