基于步态枚举编码的六足动物步态自适应:无梯度启发式

V. Parque
{"title":"基于步态枚举编码的六足动物步态自适应:无梯度启发式","authors":"V. Parque","doi":"10.1109/CEC55065.2022.9870257","DOIUrl":null,"url":null,"abstract":"The quest for the efficient adaptation of multilegged robotic systems to changing conditions is expected to render new insights into robotic control and locomotion. In this paper, we study the performance frontiers of the enumerative (factorial) encoding of hexapod gaits for fast recovery to conditions of leg failures. Our computational studies using five nature-inspired gradient-free optimization heuristics have shown that it is possible to render feasible recovery gait strategies that achieve minimal deviation to desired locomotion directives with a few evaluations (trials). For instance, it is possible to generate viable recovery gait strategies reaching 2.5 cm, (10 cm.) deviation on average with respect to a commanded direction with 40 – 60 (20) evaluations/trials. Our results are the potential to enable efficient adaptation to new conditions and to explore further the canonical representations for adaptation in robotic locomotion problems.","PeriodicalId":153241,"journal":{"name":"2022 IEEE Congress on Evolutionary Computation (CEC)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards Hexapod Gait Adaptation using Enumerative Encoding of Gaits: Gradient-Free Heuristics\",\"authors\":\"V. Parque\",\"doi\":\"10.1109/CEC55065.2022.9870257\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The quest for the efficient adaptation of multilegged robotic systems to changing conditions is expected to render new insights into robotic control and locomotion. In this paper, we study the performance frontiers of the enumerative (factorial) encoding of hexapod gaits for fast recovery to conditions of leg failures. Our computational studies using five nature-inspired gradient-free optimization heuristics have shown that it is possible to render feasible recovery gait strategies that achieve minimal deviation to desired locomotion directives with a few evaluations (trials). For instance, it is possible to generate viable recovery gait strategies reaching 2.5 cm, (10 cm.) deviation on average with respect to a commanded direction with 40 – 60 (20) evaluations/trials. Our results are the potential to enable efficient adaptation to new conditions and to explore further the canonical representations for adaptation in robotic locomotion problems.\",\"PeriodicalId\":153241,\"journal\":{\"name\":\"2022 IEEE Congress on Evolutionary Computation (CEC)\",\"volume\":\"46 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE Congress on Evolutionary Computation (CEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC55065.2022.9870257\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Congress on Evolutionary Computation (CEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC55065.2022.9870257","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

寻求多足机器人系统对不断变化的条件的有效适应,有望为机器人控制和运动提供新的见解。在本文中,我们研究了枚举(析乘)编码的性能边界六足动物的步态快速恢复的条件下,腿失效。我们使用五种自然启发的无梯度优化启发式计算研究表明,通过一些评估(试验),可以提供可行的恢复步态策略,实现对所需运动指令的最小偏差。例如,通过40 - 60(20)次评估/试验,可以生成相对于命令方向平均偏差达到2.5厘米(10厘米)的可行恢复步态策略。我们的研究结果有可能使机器人能够有效地适应新的条件,并进一步探索机器人运动问题中适应的规范表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Towards Hexapod Gait Adaptation using Enumerative Encoding of Gaits: Gradient-Free Heuristics
The quest for the efficient adaptation of multilegged robotic systems to changing conditions is expected to render new insights into robotic control and locomotion. In this paper, we study the performance frontiers of the enumerative (factorial) encoding of hexapod gaits for fast recovery to conditions of leg failures. Our computational studies using five nature-inspired gradient-free optimization heuristics have shown that it is possible to render feasible recovery gait strategies that achieve minimal deviation to desired locomotion directives with a few evaluations (trials). For instance, it is possible to generate viable recovery gait strategies reaching 2.5 cm, (10 cm.) deviation on average with respect to a commanded direction with 40 – 60 (20) evaluations/trials. Our results are the potential to enable efficient adaptation to new conditions and to explore further the canonical representations for adaptation in robotic locomotion problems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Impacts of Single-objective Landscapes on Multi-objective Optimization Cooperative Multi-objective Topology Optimization Using Clustering and Metamodeling Global and Local Area Coverage Path Planner for a Reconfigurable Robot A New Integer Linear Program and A Grouping Genetic Algorithm with Controlled Gene Transmission for Joint Order Batching and Picking Routing Problem Test Case Prioritization and Reduction Using Hybrid Quantum-behaved Particle Swarm Optimization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1