{"title":"用于CMOS神经放大器的低失真超高频亚阈值mos电阻器","authors":"Hossein Kassiri, K. Abdelhalim, R. Genov","doi":"10.1109/BioCAS.2013.6679691","DOIUrl":null,"url":null,"abstract":"A low-distortion super-GOhm subthreshold MOS resistor is designed, fabricated and experimentally validated. The circuit is utilized as a feedback element in the body of a two-stage neural recording amplifier. Linearity is experimentally validated for 0.5 Hz to 5 kHz input frequency and over 0.3 to 0.9 V output voltage dynamic range. The implemented pseudo resistor is also tunable, making the high-pass filter pole adjustable. The circuit is fabricated in 0.13-μm CMOS process and consumes 96 nW from a 1.2 V supply to realize an over 500 GΩ resistance.","PeriodicalId":344317,"journal":{"name":"2013 IEEE Biomedical Circuits and Systems Conference (BioCAS)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"48","resultStr":"{\"title\":\"Low-distortion super-GOhm subthreshold-MOS resistors for CMOS neural amplifiers\",\"authors\":\"Hossein Kassiri, K. Abdelhalim, R. Genov\",\"doi\":\"10.1109/BioCAS.2013.6679691\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A low-distortion super-GOhm subthreshold MOS resistor is designed, fabricated and experimentally validated. The circuit is utilized as a feedback element in the body of a two-stage neural recording amplifier. Linearity is experimentally validated for 0.5 Hz to 5 kHz input frequency and over 0.3 to 0.9 V output voltage dynamic range. The implemented pseudo resistor is also tunable, making the high-pass filter pole adjustable. The circuit is fabricated in 0.13-μm CMOS process and consumes 96 nW from a 1.2 V supply to realize an over 500 GΩ resistance.\",\"PeriodicalId\":344317,\"journal\":{\"name\":\"2013 IEEE Biomedical Circuits and Systems Conference (BioCAS)\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"48\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Biomedical Circuits and Systems Conference (BioCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BioCAS.2013.6679691\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Biomedical Circuits and Systems Conference (BioCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BioCAS.2013.6679691","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Low-distortion super-GOhm subthreshold-MOS resistors for CMOS neural amplifiers
A low-distortion super-GOhm subthreshold MOS resistor is designed, fabricated and experimentally validated. The circuit is utilized as a feedback element in the body of a two-stage neural recording amplifier. Linearity is experimentally validated for 0.5 Hz to 5 kHz input frequency and over 0.3 to 0.9 V output voltage dynamic range. The implemented pseudo resistor is also tunable, making the high-pass filter pole adjustable. The circuit is fabricated in 0.13-μm CMOS process and consumes 96 nW from a 1.2 V supply to realize an over 500 GΩ resistance.