基于卷积神经网络的人类情绪识别智能脑电图系统设计

Kai-Yen Wang, Yun-Lung Ho, Yu-De Huang, W. Fang
{"title":"基于卷积神经网络的人类情绪识别智能脑电图系统设计","authors":"Kai-Yen Wang, Yun-Lung Ho, Yu-De Huang, W. Fang","doi":"10.1109/AICAS.2019.8771581","DOIUrl":null,"url":null,"abstract":"Emotions play a significant role in the field of affective computing and Human-Computer Interfaces(HCI). In this paper, we propose an intelligent human emotion detection system based on EEG features with a multi-channel fused processing. We also proposed an advanced convolutional neural network that was implemented in VLSI hardware design. This hardware design can accelerate both the training and classification processes and meet real-time system requirements for fast emotion detection. The performance of this design was validated using DEAP [1] database with datasets from 32 subjects, the mean classification accuracy achieved is 83.88%.","PeriodicalId":273095,"journal":{"name":"2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Design of Intelligent EEG System for Human Emotion Recognition with Convolutional Neural Network\",\"authors\":\"Kai-Yen Wang, Yun-Lung Ho, Yu-De Huang, W. Fang\",\"doi\":\"10.1109/AICAS.2019.8771581\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Emotions play a significant role in the field of affective computing and Human-Computer Interfaces(HCI). In this paper, we propose an intelligent human emotion detection system based on EEG features with a multi-channel fused processing. We also proposed an advanced convolutional neural network that was implemented in VLSI hardware design. This hardware design can accelerate both the training and classification processes and meet real-time system requirements for fast emotion detection. The performance of this design was validated using DEAP [1] database with datasets from 32 subjects, the mean classification accuracy achieved is 83.88%.\",\"PeriodicalId\":273095,\"journal\":{\"name\":\"2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS)\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AICAS.2019.8771581\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Artificial Intelligence Circuits and Systems (AICAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AICAS.2019.8771581","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

摘要

情绪在情感计算和人机界面领域中扮演着重要的角色。本文提出了一种基于脑电特征的多通道融合处理的智能人类情绪检测系统。我们还提出了一种先进的卷积神经网络实现在VLSI硬件设计。该硬件设计可以加快训练和分类过程,满足系统对快速情感检测的实时性要求。采用DEAP[1]数据库对32名受试者的数据集进行了性能验证,平均分类准确率为83.88%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Design of Intelligent EEG System for Human Emotion Recognition with Convolutional Neural Network
Emotions play a significant role in the field of affective computing and Human-Computer Interfaces(HCI). In this paper, we propose an intelligent human emotion detection system based on EEG features with a multi-channel fused processing. We also proposed an advanced convolutional neural network that was implemented in VLSI hardware design. This hardware design can accelerate both the training and classification processes and meet real-time system requirements for fast emotion detection. The performance of this design was validated using DEAP [1] database with datasets from 32 subjects, the mean classification accuracy achieved is 83.88%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Artificial Intelligence of Things Wearable System for Cardiac Disease Detection Fast event-driven incremental learning of hand symbols Accelerating CNN-RNN Based Machine Health Monitoring on FPGA Neuromorphic networks on the SpiNNaker platform Complexity Reduction on HEVC Intra Mode Decision with modified LeNet-5
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1