Vinícius Klôh, Matheus Gritz, B. Schulze, Mariza Ferro
{"title":"迈向高性能计算优化的自主框架:使用机器学习进行能源和性能建模","authors":"Vinícius Klôh, Matheus Gritz, B. Schulze, Mariza Ferro","doi":"10.5753/wscad.2019.8689","DOIUrl":null,"url":null,"abstract":"Performance and energy efficiency are now critical concerns in high performance scientific computing. It is expected that requirements of the scientific problem should guide the orchestration of different techniques of energy saving, in order to improve the balance between energy consumption and application performance. To enable this balance, we propose the development of an autonomous framework to make this orchestration and present the ongoing research to this development, more specifically, focusing in the characterization of the scientific applications and the performance modeling tasks using Machine Learning.","PeriodicalId":117711,"journal":{"name":"Anais do Simpósio em Sistemas Computacionais de Alto Desempenho (WSCAD)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Towards an Autonomous Framework for HPC Optimization: Using Machine Learning for Energy and Performance Modeling\",\"authors\":\"Vinícius Klôh, Matheus Gritz, B. Schulze, Mariza Ferro\",\"doi\":\"10.5753/wscad.2019.8689\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Performance and energy efficiency are now critical concerns in high performance scientific computing. It is expected that requirements of the scientific problem should guide the orchestration of different techniques of energy saving, in order to improve the balance between energy consumption and application performance. To enable this balance, we propose the development of an autonomous framework to make this orchestration and present the ongoing research to this development, more specifically, focusing in the characterization of the scientific applications and the performance modeling tasks using Machine Learning.\",\"PeriodicalId\":117711,\"journal\":{\"name\":\"Anais do Simpósio em Sistemas Computacionais de Alto Desempenho (WSCAD)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anais do Simpósio em Sistemas Computacionais de Alto Desempenho (WSCAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5753/wscad.2019.8689\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do Simpósio em Sistemas Computacionais de Alto Desempenho (WSCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/wscad.2019.8689","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Towards an Autonomous Framework for HPC Optimization: Using Machine Learning for Energy and Performance Modeling
Performance and energy efficiency are now critical concerns in high performance scientific computing. It is expected that requirements of the scientific problem should guide the orchestration of different techniques of energy saving, in order to improve the balance between energy consumption and application performance. To enable this balance, we propose the development of an autonomous framework to make this orchestration and present the ongoing research to this development, more specifically, focusing in the characterization of the scientific applications and the performance modeling tasks using Machine Learning.