迈向高性能计算优化的自主框架:使用机器学习进行能源和性能建模

Vinícius Klôh, Matheus Gritz, B. Schulze, Mariza Ferro
{"title":"迈向高性能计算优化的自主框架:使用机器学习进行能源和性能建模","authors":"Vinícius Klôh, Matheus Gritz, B. Schulze, Mariza Ferro","doi":"10.5753/wscad.2019.8689","DOIUrl":null,"url":null,"abstract":"Performance and energy efficiency are now critical concerns in high performance scientific computing. It is expected that requirements of the scientific problem should guide the orchestration of different techniques of energy saving, in order to improve the balance between energy consumption and application performance. To enable this balance, we propose the development of an autonomous framework to make this orchestration and present the ongoing research to this development, more specifically, focusing in the characterization of the scientific applications and the performance modeling tasks using Machine Learning.","PeriodicalId":117711,"journal":{"name":"Anais do Simpósio em Sistemas Computacionais de Alto Desempenho (WSCAD)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Towards an Autonomous Framework for HPC Optimization: Using Machine Learning for Energy and Performance Modeling\",\"authors\":\"Vinícius Klôh, Matheus Gritz, B. Schulze, Mariza Ferro\",\"doi\":\"10.5753/wscad.2019.8689\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Performance and energy efficiency are now critical concerns in high performance scientific computing. It is expected that requirements of the scientific problem should guide the orchestration of different techniques of energy saving, in order to improve the balance between energy consumption and application performance. To enable this balance, we propose the development of an autonomous framework to make this orchestration and present the ongoing research to this development, more specifically, focusing in the characterization of the scientific applications and the performance modeling tasks using Machine Learning.\",\"PeriodicalId\":117711,\"journal\":{\"name\":\"Anais do Simpósio em Sistemas Computacionais de Alto Desempenho (WSCAD)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Anais do Simpósio em Sistemas Computacionais de Alto Desempenho (WSCAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5753/wscad.2019.8689\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anais do Simpósio em Sistemas Computacionais de Alto Desempenho (WSCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5753/wscad.2019.8689","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

性能和能源效率现在是高性能科学计算的关键问题。期望科学问题的要求能够指导不同节能技术的编排,以改善能耗与应用性能之间的平衡。为了实现这种平衡,我们建议开发一个自治框架来进行这种编排,并为这一发展提供正在进行的研究,更具体地说,关注科学应用的特征和使用机器学习的性能建模任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Towards an Autonomous Framework for HPC Optimization: Using Machine Learning for Energy and Performance Modeling
Performance and energy efficiency are now critical concerns in high performance scientific computing. It is expected that requirements of the scientific problem should guide the orchestration of different techniques of energy saving, in order to improve the balance between energy consumption and application performance. To enable this balance, we propose the development of an autonomous framework to make this orchestration and present the ongoing research to this development, more specifically, focusing in the characterization of the scientific applications and the performance modeling tasks using Machine Learning.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Performance Evaluation of Compiler Optimizations in FPGA Accelerators Análise de viabilidade de ferramenta para correção híbrida de sequências genômicas em ambiente de memória compartilhada com FPGA Poluição de Cache e Thrashing em Aplicações Paralelas de Alto Desempenho Coherence State Awareness in Way-Replacement Algorithms for Multicore Processors Identification and Characterization of Memory Allocation Anomalies in High-Performance Computing Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1