基于DCT和小噪声的图像压缩:一种新的算法及其率失真性能

Zhuoyuan Chen, Jiangtao Wen, Shiqiang Yang, Yuxing Han, J. Villasenor
{"title":"基于DCT和小噪声的图像压缩:一种新的算法及其率失真性能","authors":"Zhuoyuan Chen, Jiangtao Wen, Shiqiang Yang, Yuxing Han, J. Villasenor","doi":"10.1109/DCC.2010.62","DOIUrl":null,"url":null,"abstract":"We describe an image coding algorithm combining the DCT and noiselet information. The algorithm first transmits DCT information sufficient to reproduce a \"low-quality\" version of the image at the decoder. This image is then used both at the decoder and encoder to create a mutually known list of locations of likely significant noiselet coefficients. The coefficient values themselves are then transmitted to the decoder differentially, by subtracting, at the encoder, the low-quality image from the original image, obtaining the noiselet values and subjecting them to quantization and entropy coding. There remain significant opportunities for further work combining CS-inspired information theoretic techniques with the rate-distortion considerations that are critical in practical image communications.","PeriodicalId":299459,"journal":{"name":"2010 Data Compression Conference","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Image Compression Using the DCT and Noiselets: A New Algorithm and Its Rate Distortion Performance\",\"authors\":\"Zhuoyuan Chen, Jiangtao Wen, Shiqiang Yang, Yuxing Han, J. Villasenor\",\"doi\":\"10.1109/DCC.2010.62\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe an image coding algorithm combining the DCT and noiselet information. The algorithm first transmits DCT information sufficient to reproduce a \\\"low-quality\\\" version of the image at the decoder. This image is then used both at the decoder and encoder to create a mutually known list of locations of likely significant noiselet coefficients. The coefficient values themselves are then transmitted to the decoder differentially, by subtracting, at the encoder, the low-quality image from the original image, obtaining the noiselet values and subjecting them to quantization and entropy coding. There remain significant opportunities for further work combining CS-inspired information theoretic techniques with the rate-distortion considerations that are critical in practical image communications.\",\"PeriodicalId\":299459,\"journal\":{\"name\":\"2010 Data Compression Conference\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 Data Compression Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DCC.2010.62\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Data Compression Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCC.2010.62","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种结合DCT和小波信息的图像编码算法。该算法首先传输的DCT信息足以在解码器处再现图像的“低质量”版本。然后在解码器和编码器中使用该图像来创建一个相互已知的可能显著噪声系数的位置列表。然后将系数值本身差分传输到解码器,方法是在编码器处从原始图像中减去低质量图像,获得小噪声值并对其进行量化和熵编码。将cs启发的信息理论技术与实际图像通信中至关重要的率失真考虑相结合的进一步工作仍然有很大的机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Image Compression Using the DCT and Noiselets: A New Algorithm and Its Rate Distortion Performance
We describe an image coding algorithm combining the DCT and noiselet information. The algorithm first transmits DCT information sufficient to reproduce a "low-quality" version of the image at the decoder. This image is then used both at the decoder and encoder to create a mutually known list of locations of likely significant noiselet coefficients. The coefficient values themselves are then transmitted to the decoder differentially, by subtracting, at the encoder, the low-quality image from the original image, obtaining the noiselet values and subjecting them to quantization and entropy coding. There remain significant opportunities for further work combining CS-inspired information theoretic techniques with the rate-distortion considerations that are critical in practical image communications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Shape Recognition Using Vector Quantization Lossless Reduced Cutset Coding of Markov Random Fields Optimized Analog Mappings for Distributed Source-Channel Coding An MCMC Approach to Lossy Compression of Continuous Sources Lossless Compression of Mapped Domain Linear Prediction Residual for ITU-T Recommendation G.711.0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1