用系留的空中机器人通过倾斜悬停在斜坡上起飞和降落

M. Tognon, Andrea Testa, Enrica Rossi, Antonio Franchi
{"title":"用系留的空中机器人通过倾斜悬停在斜坡上起飞和降落","authors":"M. Tognon, Andrea Testa, Enrica Rossi, Antonio Franchi","doi":"10.1109/IROS.2016.7759273","DOIUrl":null,"url":null,"abstract":"In this paper we face the challenging problem of takeoff and landing on sloped surfaces for a VTOL aerial vehicle. We define the general conditions for a safe and robust maneuver and we analyze and compare two classes of methods to fulfill these conditions: free-flight vs. passively-tethered. Focusing on the less studied tethered method, we show its advantages w.r.t. the free-flight method thanks to the possibility of inclined hovering equilibria. We prove that the tether configuration and the inclination of the aerial vehicle w.r.t. the slope are flat outputs of the system and we design a hierarchical nonlinear controller based on this property. We then show how this controller can be used to land and takeoff in a robust way without the need of either a planner or a perfect tracking. The validity and applicability of the method in the real world is shown by experiments with a quadrotor that is able to perform a safe landing and takeoff on a sloped surface.","PeriodicalId":296337,"journal":{"name":"2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Takeoff and landing on slopes via inclined hovering with a tethered aerial robot\",\"authors\":\"M. Tognon, Andrea Testa, Enrica Rossi, Antonio Franchi\",\"doi\":\"10.1109/IROS.2016.7759273\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we face the challenging problem of takeoff and landing on sloped surfaces for a VTOL aerial vehicle. We define the general conditions for a safe and robust maneuver and we analyze and compare two classes of methods to fulfill these conditions: free-flight vs. passively-tethered. Focusing on the less studied tethered method, we show its advantages w.r.t. the free-flight method thanks to the possibility of inclined hovering equilibria. We prove that the tether configuration and the inclination of the aerial vehicle w.r.t. the slope are flat outputs of the system and we design a hierarchical nonlinear controller based on this property. We then show how this controller can be used to land and takeoff in a robust way without the need of either a planner or a perfect tracking. The validity and applicability of the method in the real world is shown by experiments with a quadrotor that is able to perform a safe landing and takeoff on a sloped surface.\",\"PeriodicalId\":296337,\"journal\":{\"name\":\"2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IROS.2016.7759273\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IROS.2016.7759273","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

摘要

本文研究了垂直起降飞行器在斜坡上的起降问题。我们定义了安全稳健机动的一般条件,并分析和比较了满足这些条件的两类方法:自由飞行与被动系留。针对研究较少的系留法,由于存在倾斜悬停平衡点的可能性,我们展示了系留法相对于自由飞行法的优势。证明了缆索结构和飞行器的倾斜度随坡度的变化是系统的平面输出,并基于这一特性设计了一种层次非线性控制器。然后,我们展示了如何使用该控制器以稳健的方式着陆和起飞,而不需要规划器或完美的跟踪。通过四旋翼飞行器在斜面上安全起降的实验,验证了该方法在现实世界中的有效性和适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Takeoff and landing on slopes via inclined hovering with a tethered aerial robot
In this paper we face the challenging problem of takeoff and landing on sloped surfaces for a VTOL aerial vehicle. We define the general conditions for a safe and robust maneuver and we analyze and compare two classes of methods to fulfill these conditions: free-flight vs. passively-tethered. Focusing on the less studied tethered method, we show its advantages w.r.t. the free-flight method thanks to the possibility of inclined hovering equilibria. We prove that the tether configuration and the inclination of the aerial vehicle w.r.t. the slope are flat outputs of the system and we design a hierarchical nonlinear controller based on this property. We then show how this controller can be used to land and takeoff in a robust way without the need of either a planner or a perfect tracking. The validity and applicability of the method in the real world is shown by experiments with a quadrotor that is able to perform a safe landing and takeoff on a sloped surface.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A passivity-based admittance control design using feedback interconnections Performance comparison of Wave Variable Transformation and Time Domain Passivity Approaches for time-delayed teleoperation: Preliminary results Iterative path optimisation for personalised dressing assistance using vision and force information Hand-eye calibration for robotic assisted minimally invasive surgery without a calibration object Modelling and dynamic analysis of underactuated capsule systems with friction-induced hysteresis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1