利用遗传算法优化Roc曲线下面积

Yang Zhi, Guo-en Xia, W. Jin
{"title":"利用遗传算法优化Roc曲线下面积","authors":"Yang Zhi, Guo-en Xia, W. Jin","doi":"10.1109/CSAE.2011.5953307","DOIUrl":null,"url":null,"abstract":"Class imbalance is one of the main obstacles in data mining. AUC is one of the main criterions to judge the performance of classifiers, which have been applied in class imbalanced datasets. So, optimizing AUC method has been realized by using gradient method to optimize it directly. But optimizing AUC method limits the shortcoming of gradient method, which is generally converged in local minima. So, this paper introduced the genetic algorithm into optimizing AUC method, and compared it with the previous one. The results of the experiment proving the method in this paper is more suitable for imbalanced datasets than the previous one.","PeriodicalId":138215,"journal":{"name":"2011 IEEE International Conference on Computer Science and Automation Engineering","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Optimizing area under the Roc curve using genetic algorithm\",\"authors\":\"Yang Zhi, Guo-en Xia, W. Jin\",\"doi\":\"10.1109/CSAE.2011.5953307\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Class imbalance is one of the main obstacles in data mining. AUC is one of the main criterions to judge the performance of classifiers, which have been applied in class imbalanced datasets. So, optimizing AUC method has been realized by using gradient method to optimize it directly. But optimizing AUC method limits the shortcoming of gradient method, which is generally converged in local minima. So, this paper introduced the genetic algorithm into optimizing AUC method, and compared it with the previous one. The results of the experiment proving the method in this paper is more suitable for imbalanced datasets than the previous one.\",\"PeriodicalId\":138215,\"journal\":{\"name\":\"2011 IEEE International Conference on Computer Science and Automation Engineering\",\"volume\":\"45 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE International Conference on Computer Science and Automation Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSAE.2011.5953307\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Conference on Computer Science and Automation Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSAE.2011.5953307","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

类不平衡是数据挖掘的主要障碍之一。AUC是判断分类器性能的主要标准之一,已在类不平衡数据集中得到应用。因此,采用梯度法直接对AUC方法进行优化,实现了AUC方法的优化。但优化AUC方法限制了梯度法一般收敛于局部极小值的缺点。因此,本文将遗传算法引入到AUC方法的优化中,并与已有的AUC方法进行了比较。实验结果表明,本文方法比以前的方法更适合于不平衡数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimizing area under the Roc curve using genetic algorithm
Class imbalance is one of the main obstacles in data mining. AUC is one of the main criterions to judge the performance of classifiers, which have been applied in class imbalanced datasets. So, optimizing AUC method has been realized by using gradient method to optimize it directly. But optimizing AUC method limits the shortcoming of gradient method, which is generally converged in local minima. So, this paper introduced the genetic algorithm into optimizing AUC method, and compared it with the previous one. The results of the experiment proving the method in this paper is more suitable for imbalanced datasets than the previous one.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Visual group identification method of technical competitors using LinLog graph clustering algorithm Overview of 3D textile dynamic simulation research Monotonically decreasing eigenvalue for edge-sharpening diffusion Visual Tracking with adaptive layered-optimizing particles in Multifeature Particle Filtering Framework The fast Viterbi algorithm caching Profile Hidden Markov Models on graphic processing units
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1