基于概念漂移的数据流分类中的集成多样性动态调整

Juan Isidro González Hidalgo, S. G. T. C. Santos, Roberto S. M. Barros
{"title":"基于概念漂移的数据流分类中的集成多样性动态调整","authors":"Juan Isidro González Hidalgo, S. G. T. C. Santos, Roberto S. M. Barros","doi":"10.1145/3466616","DOIUrl":null,"url":null,"abstract":"A data stream can be defined as a system that continually generates a lot of data over time. Today, processing data streams requires new demands and challenging tasks in the data mining and machine learning areas. Concept Drift is a problem commonly characterized as changes in the distribution of the data within a data stream. The implementation of new methods for dealing with data streams where concept drifts occur requires algorithms that can adapt to several scenarios to improve its performance in the different experimental situations where they are tested. This research proposes a strategy for dynamic parameter adjustment in the presence of concept drifts. Parameter Estimation Procedure (PEP) is a general method proposed for dynamically adjusting parameters which is applied to the diversity parameter (λ) of several classification ensembles commonly used in the area. To this end, the proposed estimation method (PEP) was used to create Boosting-like Online Learning Ensemble with Parameter Estimation (BOLE-PE), Online AdaBoost-based M1 with Parameter Estimation (OABM1-PE), and Oza and Russell’s Online Bagging with Parameter Estimation (OzaBag-PE), based on the existing ensembles BOLE, OABM1, and OzaBag, respectively. To validate them, experiments were performed with artificial and real-world datasets using Hoeffding Tree (HT) as base classifier. The accuracy results were statistically evaluated using a variation of the Friedman test and the Nemenyi post-hoc test. The experimental results showed that the application of the dynamic estimation in the diversity parameter (λ) produced good results in most scenarios, i.e., the modified methods have improved accuracy in the experiments with both artificial and real-world datasets.","PeriodicalId":435653,"journal":{"name":"ACM Transactions on Knowledge Discovery from Data (TKDD)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Dynamically Adjusting Diversity in Ensembles for the Classification of Data Streams with Concept Drift\",\"authors\":\"Juan Isidro González Hidalgo, S. G. T. C. Santos, Roberto S. M. Barros\",\"doi\":\"10.1145/3466616\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A data stream can be defined as a system that continually generates a lot of data over time. Today, processing data streams requires new demands and challenging tasks in the data mining and machine learning areas. Concept Drift is a problem commonly characterized as changes in the distribution of the data within a data stream. The implementation of new methods for dealing with data streams where concept drifts occur requires algorithms that can adapt to several scenarios to improve its performance in the different experimental situations where they are tested. This research proposes a strategy for dynamic parameter adjustment in the presence of concept drifts. Parameter Estimation Procedure (PEP) is a general method proposed for dynamically adjusting parameters which is applied to the diversity parameter (λ) of several classification ensembles commonly used in the area. To this end, the proposed estimation method (PEP) was used to create Boosting-like Online Learning Ensemble with Parameter Estimation (BOLE-PE), Online AdaBoost-based M1 with Parameter Estimation (OABM1-PE), and Oza and Russell’s Online Bagging with Parameter Estimation (OzaBag-PE), based on the existing ensembles BOLE, OABM1, and OzaBag, respectively. To validate them, experiments were performed with artificial and real-world datasets using Hoeffding Tree (HT) as base classifier. The accuracy results were statistically evaluated using a variation of the Friedman test and the Nemenyi post-hoc test. The experimental results showed that the application of the dynamic estimation in the diversity parameter (λ) produced good results in most scenarios, i.e., the modified methods have improved accuracy in the experiments with both artificial and real-world datasets.\",\"PeriodicalId\":435653,\"journal\":{\"name\":\"ACM Transactions on Knowledge Discovery from Data (TKDD)\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Knowledge Discovery from Data (TKDD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3466616\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Knowledge Discovery from Data (TKDD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3466616","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

数据流可以定义为随着时间的推移不断生成大量数据的系统。今天,处理数据流在数据挖掘和机器学习领域提出了新的要求和具有挑战性的任务。概念漂移是一个通常以数据流中数据分布变化为特征的问题。实现处理发生概念漂移的数据流的新方法需要能够适应多种场景的算法,以提高其在测试的不同实验情况下的性能。本研究提出了一种存在概念漂移时的动态参数调整策略。参数估计程序(PEP)是一种动态调整参数的通用方法,应用于该领域常用的几种分类系统的分集参数(λ)。为此,利用所提出的估计方法(PEP),分别在现有的集成系统BOLE、OABM1和OzaBag的基础上,创建了类boost在线学习集成与参数估计(BOLE- pe)、基于adaboost的在线学习集成与参数估计(OABM1- pe)和Oza和Russell的在线Bagging与参数估计(OzaBag- pe)。为了验证它们,使用Hoeffding Tree (HT)作为基础分类器,在人工和现实世界的数据集上进行了实验。使用Friedman检验和Nemenyi事后检验的变体对准确性结果进行统计评估。实验结果表明,对分集参数(λ)的动态估计在大多数情况下都取得了良好的效果,即改进的方法在人工和真实数据集的实验中都提高了精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Dynamically Adjusting Diversity in Ensembles for the Classification of Data Streams with Concept Drift
A data stream can be defined as a system that continually generates a lot of data over time. Today, processing data streams requires new demands and challenging tasks in the data mining and machine learning areas. Concept Drift is a problem commonly characterized as changes in the distribution of the data within a data stream. The implementation of new methods for dealing with data streams where concept drifts occur requires algorithms that can adapt to several scenarios to improve its performance in the different experimental situations where they are tested. This research proposes a strategy for dynamic parameter adjustment in the presence of concept drifts. Parameter Estimation Procedure (PEP) is a general method proposed for dynamically adjusting parameters which is applied to the diversity parameter (λ) of several classification ensembles commonly used in the area. To this end, the proposed estimation method (PEP) was used to create Boosting-like Online Learning Ensemble with Parameter Estimation (BOLE-PE), Online AdaBoost-based M1 with Parameter Estimation (OABM1-PE), and Oza and Russell’s Online Bagging with Parameter Estimation (OzaBag-PE), based on the existing ensembles BOLE, OABM1, and OzaBag, respectively. To validate them, experiments were performed with artificial and real-world datasets using Hoeffding Tree (HT) as base classifier. The accuracy results were statistically evaluated using a variation of the Friedman test and the Nemenyi post-hoc test. The experimental results showed that the application of the dynamic estimation in the diversity parameter (λ) produced good results in most scenarios, i.e., the modified methods have improved accuracy in the experiments with both artificial and real-world datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
相关文献
二甲双胍通过HDAC6和FoxO3a转录调控肌肉生长抑制素诱导肌肉萎缩
IF 8.9 1区 医学Journal of Cachexia, Sarcopenia and MusclePub Date : 2021-11-02 DOI: 10.1002/jcsm.12833
Min Ju Kang, Ji Wook Moon, Jung Ok Lee, Ji Hae Kim, Eun Jeong Jung, Su Jin Kim, Joo Yeon Oh, Sang Woo Wu, Pu Reum Lee, Sun Hwa Park, Hyeon Soo Kim
具有疾病敏感单倍型的非亲属供体脐带血移植后的1型糖尿病
IF 3.2 3区 医学Journal of Diabetes InvestigationPub Date : 2022-11-02 DOI: 10.1111/jdi.13939
Kensuke Matsumoto, Taisuke Matsuyama, Ritsu Sumiyoshi, Matsuo Takuji, Tadashi Yamamoto, Ryosuke Shirasaki, Haruko Tashiro
封面:蛋白质组学分析确定IRSp53和fastin是PRV输出和直接细胞-细胞传播的关键
IF 3.4 4区 生物学ProteomicsPub Date : 2019-12-02 DOI: 10.1002/pmic.201970201
Fei-Long Yu, Huan Miao, Jinjin Xia, Fan Jia, Huadong Wang, Fuqiang Xu, Lin Guo
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Machine Learning-based Short-term Rainfall Prediction from Sky Data Incremental Feature Spaces Learning with Label Scarcity Multi-objective Learning to Overcome Catastrophic Forgetting in Time-series Applications Combining Filtering and Cross-Correlation Efficiently for Streaming Time Series Segment-Wise Time-Varying Dynamic Bayesian Network with Graph Regularization
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1