仅使用传入基准的演化数据流动态超椭球微聚类

Narongrid Tangpathompong, U. Suksawatchon, J. Suksawatchon
{"title":"仅使用传入基准的演化数据流动态超椭球微聚类","authors":"Narongrid Tangpathompong, U. Suksawatchon, J. Suksawatchon","doi":"10.1145/3144789.3144818","DOIUrl":null,"url":null,"abstract":"Data stream clustering is becoming the efficient method to cluster an online massive data. The clustering task requires a process capable of partitioning data continuously with incremental learning method. In this paper, we present a new clustering method, called DyHEMstream, which is online and offline algorithm. In online phase, dynamic hyper-ellipsoidal micro-cluster is proposed used to keep summary information about evolving data stream based on new incoming data sample. The shape of proposed micro-cluster can represent the incoming data better than traditional micro-cluster. The algorithm processes each data point in one-pass fashion without storing the entire data set. In offline phase, each cluster is generated by expanding hyper-ellipsoidal micro-clusters to form the final clusters. The DyHEMstream algorithm is evaluated on various synthetic data sets using different quality metrics compared with a famous data stream clustering -- DenStream. Based on purity, Rand index, and Jaccard index, DyHEMstrem is very efficient than DenStream in term of clustering quality in different shapes, sizes, and densities in noisy data.","PeriodicalId":254163,"journal":{"name":"Proceedings of the 2nd International Conference on Intelligent Information Processing","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Dynamic Hyper-ellipsoidal Micro-Clustering for Evolving Data Stream Using Only Incoming Datum\",\"authors\":\"Narongrid Tangpathompong, U. Suksawatchon, J. Suksawatchon\",\"doi\":\"10.1145/3144789.3144818\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data stream clustering is becoming the efficient method to cluster an online massive data. The clustering task requires a process capable of partitioning data continuously with incremental learning method. In this paper, we present a new clustering method, called DyHEMstream, which is online and offline algorithm. In online phase, dynamic hyper-ellipsoidal micro-cluster is proposed used to keep summary information about evolving data stream based on new incoming data sample. The shape of proposed micro-cluster can represent the incoming data better than traditional micro-cluster. The algorithm processes each data point in one-pass fashion without storing the entire data set. In offline phase, each cluster is generated by expanding hyper-ellipsoidal micro-clusters to form the final clusters. The DyHEMstream algorithm is evaluated on various synthetic data sets using different quality metrics compared with a famous data stream clustering -- DenStream. Based on purity, Rand index, and Jaccard index, DyHEMstrem is very efficient than DenStream in term of clustering quality in different shapes, sizes, and densities in noisy data.\",\"PeriodicalId\":254163,\"journal\":{\"name\":\"Proceedings of the 2nd International Conference on Intelligent Information Processing\",\"volume\":\"30 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2nd International Conference on Intelligent Information Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3144789.3144818\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2nd International Conference on Intelligent Information Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3144789.3144818","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

数据流聚类正在成为对在线海量数据进行聚类的有效方法。聚类任务需要一个能够使用增量学习方法连续划分数据的过程。本文提出了一种新的聚类方法,称为DyHEMstream,它是一种在线和离线算法。在在线阶段,基于新输入的数据样本,提出了动态超椭球微簇来保存演化数据流的汇总信息。与传统的微簇相比,该微簇的形状能更好地表征输入数据。该算法以一遍的方式处理每个数据点,而不存储整个数据集。在离线阶段,每个团簇都是由超椭球微团簇膨胀形成最终团簇。与著名的数据流聚类——DenStream相比,DyHEMstream算法使用不同的质量指标在各种合成数据集上进行了评估。基于纯度、Rand指数和Jaccard指数,dyhemstream在噪声数据中不同形状、大小和密度的聚类质量方面比DenStream更有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Dynamic Hyper-ellipsoidal Micro-Clustering for Evolving Data Stream Using Only Incoming Datum
Data stream clustering is becoming the efficient method to cluster an online massive data. The clustering task requires a process capable of partitioning data continuously with incremental learning method. In this paper, we present a new clustering method, called DyHEMstream, which is online and offline algorithm. In online phase, dynamic hyper-ellipsoidal micro-cluster is proposed used to keep summary information about evolving data stream based on new incoming data sample. The shape of proposed micro-cluster can represent the incoming data better than traditional micro-cluster. The algorithm processes each data point in one-pass fashion without storing the entire data set. In offline phase, each cluster is generated by expanding hyper-ellipsoidal micro-clusters to form the final clusters. The DyHEMstream algorithm is evaluated on various synthetic data sets using different quality metrics compared with a famous data stream clustering -- DenStream. Based on purity, Rand index, and Jaccard index, DyHEMstrem is very efficient than DenStream in term of clustering quality in different shapes, sizes, and densities in noisy data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On-line Multi-step Prediction of Short Term Traffic Flow Based on GRU Neural Network An Image Denoising Fast Algorithm for Weighted Total Variation An AQI Level Forecasting Model Using Chi-square Test and BP Neural Network Research on Mural Inpainting Method based on MCA Image Decomposition Variation Characteristics Analysis of the Vegetation Coverage in Midu County Based on Landsat 8 Remote Sensing Image
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1