垂直自旋-传递-转矩随机存取存储器待机和主动写入模式磁抗扰度仿真研究

Sonalie Ahirwar, T. Pramanik
{"title":"垂直自旋-传递-转矩随机存取存储器待机和主动写入模式磁抗扰度仿真研究","authors":"Sonalie Ahirwar, T. Pramanik","doi":"10.1109/ICEE56203.2022.10117969","DOIUrl":null,"url":null,"abstract":"Magnetic immunity is an important reliability metric for spin-transfer-torque random-access memory (STT-RAM). The presence of an external magnetic field may cause retention fails in stand-by mode or switching fails during the write operation. Specifically, active write mode magnetic immunity has not been well explored although it was reported to be the limiter in deciding the magnetic immunity metrics. Here, we present a simulation study of stand-by bit error rates (BER) and write error rates (WER) under the influence of external magnetic field perturbation. Results show that the effect of the external magnetic field is more pronounced when it is applied along a direction non-collinear to the easy axis of the magnet. Variation in the stand-by BER is found to follow the Stoner-Wohlfarth model. It is also observed that the active write mode BER may increase by orders of magnitude for specific directions of applied fields depending on the applied write current and magnetic field strength. The variation in WER is explained by the formation of additional zero-torque “stagnation points” on the magnetization unit sphere. The results show the need for careful characterization of both the stand-by mode and the active write mode while measuring the magnetic immunity of the STT-RAM cell.","PeriodicalId":281727,"journal":{"name":"2022 IEEE International Conference on Emerging Electronics (ICEE)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A simulation study of stand-by and active write mode magnetic immunity of perpendicular spin-transfer-torque random-access memory\",\"authors\":\"Sonalie Ahirwar, T. Pramanik\",\"doi\":\"10.1109/ICEE56203.2022.10117969\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Magnetic immunity is an important reliability metric for spin-transfer-torque random-access memory (STT-RAM). The presence of an external magnetic field may cause retention fails in stand-by mode or switching fails during the write operation. Specifically, active write mode magnetic immunity has not been well explored although it was reported to be the limiter in deciding the magnetic immunity metrics. Here, we present a simulation study of stand-by bit error rates (BER) and write error rates (WER) under the influence of external magnetic field perturbation. Results show that the effect of the external magnetic field is more pronounced when it is applied along a direction non-collinear to the easy axis of the magnet. Variation in the stand-by BER is found to follow the Stoner-Wohlfarth model. It is also observed that the active write mode BER may increase by orders of magnitude for specific directions of applied fields depending on the applied write current and magnetic field strength. The variation in WER is explained by the formation of additional zero-torque “stagnation points” on the magnetization unit sphere. The results show the need for careful characterization of both the stand-by mode and the active write mode while measuring the magnetic immunity of the STT-RAM cell.\",\"PeriodicalId\":281727,\"journal\":{\"name\":\"2022 IEEE International Conference on Emerging Electronics (ICEE)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Emerging Electronics (ICEE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEE56203.2022.10117969\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Emerging Electronics (ICEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEE56203.2022.10117969","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

磁抗扰度是衡量自旋-传递-转矩随机存取存储器(STT-RAM)可靠性的重要指标。外部磁场的存在可能导致待机模式下的保留失败或写操作期间的切换失败。具体来说,主动写模式磁抗扰度尚未得到很好的研究,尽管据报道它是决定磁抗扰度指标的限制因素。本文对外加磁场扰动下的待机误码率(BER)和写入误码率(WER)进行了仿真研究。结果表明,当外加磁场沿磁体易轴线非共线方向施加时,外加磁场的影响更为明显。待机比的变化遵循Stoner-Wohlfarth模型。还观察到,根据所施加的写入电流和磁场强度,主动写入模式的误码率可以在施加磁场的特定方向上增加几个数量级。电导率的变化可以通过在磁化单位球上形成额外的零转矩“滞止点”来解释。结果表明,在测量STT-RAM单元的磁抗扰度时,需要仔细表征待机模式和主动写入模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A simulation study of stand-by and active write mode magnetic immunity of perpendicular spin-transfer-torque random-access memory
Magnetic immunity is an important reliability metric for spin-transfer-torque random-access memory (STT-RAM). The presence of an external magnetic field may cause retention fails in stand-by mode or switching fails during the write operation. Specifically, active write mode magnetic immunity has not been well explored although it was reported to be the limiter in deciding the magnetic immunity metrics. Here, we present a simulation study of stand-by bit error rates (BER) and write error rates (WER) under the influence of external magnetic field perturbation. Results show that the effect of the external magnetic field is more pronounced when it is applied along a direction non-collinear to the easy axis of the magnet. Variation in the stand-by BER is found to follow the Stoner-Wohlfarth model. It is also observed that the active write mode BER may increase by orders of magnitude for specific directions of applied fields depending on the applied write current and magnetic field strength. The variation in WER is explained by the formation of additional zero-torque “stagnation points” on the magnetization unit sphere. The results show the need for careful characterization of both the stand-by mode and the active write mode while measuring the magnetic immunity of the STT-RAM cell.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Organic Dye Based Longer Wavelength Photodetector for Narrowband Application Numerical Simulation and Parameter Extraction of Pure Thermionic Emission Across Schottky Contacts Inkjet-printed mesoporous indium oxide-based near-vertical transport thin film transistors and pseudo-CMOS inverters Flash imaging for microfluidics Fabrication and optimization of T -gate for high performance HEMT and MMIC devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1