一种改进的金属氧化物忆阻器模型

V. Mladenov, S. Kirilov
{"title":"一种改进的金属氧化物忆阻器模型","authors":"V. Mladenov, S. Kirilov","doi":"10.1109/mocast54814.2022.9837519","DOIUrl":null,"url":null,"abstract":"The memristor is a new and promising electronic memory element and could be a possible replacement for the present CMOS components. Due to its nano size, low energy usage and memory effect, it could be used in neural nets, memory crossbars, reconfigurable analogue and digital devices and other electronic schemes. In this paper, a simple, fast functioning modified metal oxide memristor model is suggested. Its corresponding LTSPICE library model is generated and successfully analyzed in a simple neural network. The model’s behavior is in accordance with the basic fingerprints of the memristor elements. Its proper operation and applicability in memristor-based devices is established.","PeriodicalId":122414,"journal":{"name":"2022 11th International Conference on Modern Circuits and Systems Technologies (MOCAST)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Modified Metal Oxide Memristor Model\",\"authors\":\"V. Mladenov, S. Kirilov\",\"doi\":\"10.1109/mocast54814.2022.9837519\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The memristor is a new and promising electronic memory element and could be a possible replacement for the present CMOS components. Due to its nano size, low energy usage and memory effect, it could be used in neural nets, memory crossbars, reconfigurable analogue and digital devices and other electronic schemes. In this paper, a simple, fast functioning modified metal oxide memristor model is suggested. Its corresponding LTSPICE library model is generated and successfully analyzed in a simple neural network. The model’s behavior is in accordance with the basic fingerprints of the memristor elements. Its proper operation and applicability in memristor-based devices is established.\",\"PeriodicalId\":122414,\"journal\":{\"name\":\"2022 11th International Conference on Modern Circuits and Systems Technologies (MOCAST)\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 11th International Conference on Modern Circuits and Systems Technologies (MOCAST)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/mocast54814.2022.9837519\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 11th International Conference on Modern Circuits and Systems Technologies (MOCAST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/mocast54814.2022.9837519","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

忆阻器是一种新型的、有发展前途的电子存储元件,有可能取代现有的CMOS元件。由于其纳米尺寸、低能耗和记忆效应,可用于神经网络、记忆横条、可重构模拟和数字器件等电子方案。本文提出了一种简单、快速的修正金属氧化物忆阻器模型。生成了相应的LTSPICE库模型,并在一个简单的神经网络中成功地进行了分析。模型的行为符合忆阻器元件的基本指纹。建立了该方法在忆阻器器件中的适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Modified Metal Oxide Memristor Model
The memristor is a new and promising electronic memory element and could be a possible replacement for the present CMOS components. Due to its nano size, low energy usage and memory effect, it could be used in neural nets, memory crossbars, reconfigurable analogue and digital devices and other electronic schemes. In this paper, a simple, fast functioning modified metal oxide memristor model is suggested. Its corresponding LTSPICE library model is generated and successfully analyzed in a simple neural network. The model’s behavior is in accordance with the basic fingerprints of the memristor elements. Its proper operation and applicability in memristor-based devices is established.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Defining the performance of SiOx ReRAM by engineering oxide microstructure A Methodology for Writer Identification, With Application to An Important Historical Greek Document Compact Ground Bounce Sensors for SoC Energy Harvesting Applications A System-by-Design Approach for Optimal Planning of EM Skins in Smart Urban Areas A General Model for Metal Oxide-Based Memristors and Application in Filters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1