天河二号超级计算机上Hubbard模型的大规模并行精确对角化算法

Biao Li, Jie Liu
{"title":"天河二号超级计算机上Hubbard模型的大规模并行精确对角化算法","authors":"Biao Li, Jie Liu","doi":"10.1145/3546000.3546001","DOIUrl":null,"url":null,"abstract":"We propose a parallel exact diagonalization method for solving the large-scale Hubbard model. The core of this algorithm is the parallelization of the Lanczos algorithm, for which we propose a hierarchical communication model and a fast strategy for finding nonzero elements of large-scale matrix, starting only from the symmetry of Hamiltonian matrix. The effect of our parallel algorithm was tested on the Tianhe-2 supercomputer, where the strong scaling efficiency could reach 53% for 30,000 cores in a 140-billion dimensional matrix, and the weak scaling efficiency remained above 40% for 60,000 cores in a 730-billion dimensional matrix.","PeriodicalId":196955,"journal":{"name":"Proceedings of the 6th International Conference on High Performance Compilation, Computing and Communications","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Large-scale parallel exact diagonalization algorithm of the Hubbard model on Tianhe-2 supercomputer\",\"authors\":\"Biao Li, Jie Liu\",\"doi\":\"10.1145/3546000.3546001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a parallel exact diagonalization method for solving the large-scale Hubbard model. The core of this algorithm is the parallelization of the Lanczos algorithm, for which we propose a hierarchical communication model and a fast strategy for finding nonzero elements of large-scale matrix, starting only from the symmetry of Hamiltonian matrix. The effect of our parallel algorithm was tested on the Tianhe-2 supercomputer, where the strong scaling efficiency could reach 53% for 30,000 cores in a 140-billion dimensional matrix, and the weak scaling efficiency remained above 40% for 60,000 cores in a 730-billion dimensional matrix.\",\"PeriodicalId\":196955,\"journal\":{\"name\":\"Proceedings of the 6th International Conference on High Performance Compilation, Computing and Communications\",\"volume\":\"70 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 6th International Conference on High Performance Compilation, Computing and Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3546000.3546001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 6th International Conference on High Performance Compilation, Computing and Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3546000.3546001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

提出了一种求解大规模Hubbard模型的平行精确对角化方法。该算法的核心是Lanczos算法的并行化,针对Lanczos算法,我们提出了一种分层通信模型和快速寻找大规模矩阵非零元素的策略,仅从哈密顿矩阵的对称性出发。我们的并行算法在天河二号超级计算机上进行了测试,在1400亿维矩阵中,3万核的强缩放效率可以达到53%,在7300亿维矩阵中,6万核的弱缩放效率保持在40%以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Large-scale parallel exact diagonalization algorithm of the Hubbard model on Tianhe-2 supercomputer
We propose a parallel exact diagonalization method for solving the large-scale Hubbard model. The core of this algorithm is the parallelization of the Lanczos algorithm, for which we propose a hierarchical communication model and a fast strategy for finding nonzero elements of large-scale matrix, starting only from the symmetry of Hamiltonian matrix. The effect of our parallel algorithm was tested on the Tianhe-2 supercomputer, where the strong scaling efficiency could reach 53% for 30,000 cores in a 140-billion dimensional matrix, and the weak scaling efficiency remained above 40% for 60,000 cores in a 730-billion dimensional matrix.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Track planning and obstacle avoidance of wave glider based on improved artificial potential field algorithm Explore Deep Feature Learning to Power Equipment Monitoring and Defect Detection Attention Modulates the Neural Oscillation of Theta Frequency in Audiovisual Integration Research on Medical Image Classification Based on Image Segmentation and Feature Fusion High-Performance Cryptographic SoC Virtual Prototyping Platform Based on RISC-V VP
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1