{"title":"利用多维信号处理射频电路,利用单ADC对数字天线阵列的H极化和v极化天线进行采样","authors":"A. Madanayake, Najath Akram, L. Belostotski","doi":"10.1109/ICDSP.2018.8631606","DOIUrl":null,"url":null,"abstract":"Digital array receivers increasingly require both H and V polarization of the incident RF waves while supporting full-band operation. A wideband ADC is required for each polarization at every location of the array, leading to 2N ADCs for N locations. The paper proposes exploiting multidimensional sparsity in the spatio-temporal frequency domain to reduce the number of ADCs from 2N to N, while supporting two polarizations and wideband RF-digital operation. By using spatiotemporal sparsity with multi-dimensional linear transforms, it is proposed to combine the H and V array signals without interference, such that, the combined array signal can be sampled using just N ADCs. This allows a modern RFSoC or array receiver with N wideband ADC inputs to process N spatial locations in an array where each location contains a cross-polarized element measuring both H and V components, doubling the information carrying capacity of the N-ADC system provided that the elements limit the field-of-view to about 60°.","PeriodicalId":218806,"journal":{"name":"2018 IEEE 23rd International Conference on Digital Signal Processing (DSP)","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sampling H- & V-Polarized Antennas using a Single ADC for Digital Antenna Arrays by Exploiting Multi-Dimensional Signal Processing RF Circuits\",\"authors\":\"A. Madanayake, Najath Akram, L. Belostotski\",\"doi\":\"10.1109/ICDSP.2018.8631606\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Digital array receivers increasingly require both H and V polarization of the incident RF waves while supporting full-band operation. A wideband ADC is required for each polarization at every location of the array, leading to 2N ADCs for N locations. The paper proposes exploiting multidimensional sparsity in the spatio-temporal frequency domain to reduce the number of ADCs from 2N to N, while supporting two polarizations and wideband RF-digital operation. By using spatiotemporal sparsity with multi-dimensional linear transforms, it is proposed to combine the H and V array signals without interference, such that, the combined array signal can be sampled using just N ADCs. This allows a modern RFSoC or array receiver with N wideband ADC inputs to process N spatial locations in an array where each location contains a cross-polarized element measuring both H and V components, doubling the information carrying capacity of the N-ADC system provided that the elements limit the field-of-view to about 60°.\",\"PeriodicalId\":218806,\"journal\":{\"name\":\"2018 IEEE 23rd International Conference on Digital Signal Processing (DSP)\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 23rd International Conference on Digital Signal Processing (DSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDSP.2018.8631606\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 23rd International Conference on Digital Signal Processing (DSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDSP.2018.8631606","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Sampling H- & V-Polarized Antennas using a Single ADC for Digital Antenna Arrays by Exploiting Multi-Dimensional Signal Processing RF Circuits
Digital array receivers increasingly require both H and V polarization of the incident RF waves while supporting full-band operation. A wideband ADC is required for each polarization at every location of the array, leading to 2N ADCs for N locations. The paper proposes exploiting multidimensional sparsity in the spatio-temporal frequency domain to reduce the number of ADCs from 2N to N, while supporting two polarizations and wideband RF-digital operation. By using spatiotemporal sparsity with multi-dimensional linear transforms, it is proposed to combine the H and V array signals without interference, such that, the combined array signal can be sampled using just N ADCs. This allows a modern RFSoC or array receiver with N wideband ADC inputs to process N spatial locations in an array where each location contains a cross-polarized element measuring both H and V components, doubling the information carrying capacity of the N-ADC system provided that the elements limit the field-of-view to about 60°.