建筑一体化光伏窗的参数化研究

Yuan Gao, J. Jonsson, C. Curcija
{"title":"建筑一体化光伏窗的参数化研究","authors":"Yuan Gao, J. Jonsson, C. Curcija","doi":"10.1109/pvsc48317.2022.9938929","DOIUrl":null,"url":null,"abstract":"Building integrated photovoltaic (BIPV), as a distributed energy resource, can cover a part of the building energy demands and even help achieve the idea of net-zero energy buildings. By connecting with energy storage and grid, the entire BIPV systems have a high demand flexibility potential and can improve building resilience against power outages. Roof BIPVs, though considered as the mainstream, have limited area in high-rise buildings compared with windows, where semi-transparent PVs can play a significant role of energy resources given the considerable vertical window areas in modern urban environment. Material scientists have developed various semi-transparent solar cells with a wide range of power conversion efficiencies (PCEs), and solar and visible transmittance. However, it is not clear about the optimal configurations of semi-transparent solar cells for different types of buildings and climates. To tackle this problem, we conducted a parametric study on PV windows in a reference commercial building considering variables including PCE, solar transmittance, solar absorptance, U factor, daylighting control, window orientations, and climate types. Our model considers the thermal effects of PV windows, i.e., a load or grid connected PV window turns partial solar absorption into electricity instead of heat. The first finding, which differs from roof PVs, is that the vertical solar radiation on east and west facing windows is comparable to that on the south facing windows because the special 90° title angle results in more uniform POA irradiance in different orientations. It means the combination of PV windows in different orientations provide more stable power generation for the building. Results show that the PCE of PV windows dominates the energy saving despite other variables. The balance between solar transmittance and absorptance is also important for energy saving. Slightly higher visible transmittance (0.1) benefits the building energy saving when daylighting control is applied.","PeriodicalId":435386,"journal":{"name":"2022 IEEE 49th Photovoltaics Specialists Conference (PVSC)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Parametric study of building-integrated photovoltaic windows\",\"authors\":\"Yuan Gao, J. Jonsson, C. Curcija\",\"doi\":\"10.1109/pvsc48317.2022.9938929\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Building integrated photovoltaic (BIPV), as a distributed energy resource, can cover a part of the building energy demands and even help achieve the idea of net-zero energy buildings. By connecting with energy storage and grid, the entire BIPV systems have a high demand flexibility potential and can improve building resilience against power outages. Roof BIPVs, though considered as the mainstream, have limited area in high-rise buildings compared with windows, where semi-transparent PVs can play a significant role of energy resources given the considerable vertical window areas in modern urban environment. Material scientists have developed various semi-transparent solar cells with a wide range of power conversion efficiencies (PCEs), and solar and visible transmittance. However, it is not clear about the optimal configurations of semi-transparent solar cells for different types of buildings and climates. To tackle this problem, we conducted a parametric study on PV windows in a reference commercial building considering variables including PCE, solar transmittance, solar absorptance, U factor, daylighting control, window orientations, and climate types. Our model considers the thermal effects of PV windows, i.e., a load or grid connected PV window turns partial solar absorption into electricity instead of heat. The first finding, which differs from roof PVs, is that the vertical solar radiation on east and west facing windows is comparable to that on the south facing windows because the special 90° title angle results in more uniform POA irradiance in different orientations. It means the combination of PV windows in different orientations provide more stable power generation for the building. Results show that the PCE of PV windows dominates the energy saving despite other variables. The balance between solar transmittance and absorptance is also important for energy saving. Slightly higher visible transmittance (0.1) benefits the building energy saving when daylighting control is applied.\",\"PeriodicalId\":435386,\"journal\":{\"name\":\"2022 IEEE 49th Photovoltaics Specialists Conference (PVSC)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 49th Photovoltaics Specialists Conference (PVSC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/pvsc48317.2022.9938929\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 49th Photovoltaics Specialists Conference (PVSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/pvsc48317.2022.9938929","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

建筑集成光伏(BIPV)作为一种分布式能源,可以覆盖部分建筑能源需求,甚至有助于实现净零能耗建筑的理念。通过与储能和电网连接,整个BIPV系统具有很高的需求灵活性潜力,可以提高建筑物对停电的恢复能力。屋顶bipv虽然被认为是主流,但与窗户相比,其在高层建筑中的面积有限,在现代城市环境中,由于垂直窗户面积相当大,半透明的pv可以发挥重要的能源作用。材料科学家已经开发出各种半透明太阳能电池,具有广泛的功率转换效率(pce),以及太阳能和可见光透过率。然而,对于不同类型的建筑和气候,半透明太阳能电池的最佳配置尚不清楚。为了解决这个问题,我们对参考商业建筑的PV窗进行了参数化研究,考虑了PCE、太阳透射率、太阳吸收率、U因子、采光控制、窗户朝向和气候类型等变量。我们的模型考虑了光伏窗的热效应,即负载或并网的光伏窗将部分太阳能吸收转化为电能而不是热量。与屋顶pv不同的第一个发现是,朝东和朝西的窗户的垂直太阳辐射与朝南的窗户相当,因为特殊的90°标题角导致不同方向上的POA辐照度更均匀。这意味着不同朝向的光伏窗组合为建筑提供更稳定的发电。结果表明,尽管存在其他变量,但PV窗的PCE在节能方面占主导地位。太阳能透过率和吸收率之间的平衡对节能也很重要。稍高的可见光透过率(0.1)在采光控制下有利于建筑节能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Parametric study of building-integrated photovoltaic windows
Building integrated photovoltaic (BIPV), as a distributed energy resource, can cover a part of the building energy demands and even help achieve the idea of net-zero energy buildings. By connecting with energy storage and grid, the entire BIPV systems have a high demand flexibility potential and can improve building resilience against power outages. Roof BIPVs, though considered as the mainstream, have limited area in high-rise buildings compared with windows, where semi-transparent PVs can play a significant role of energy resources given the considerable vertical window areas in modern urban environment. Material scientists have developed various semi-transparent solar cells with a wide range of power conversion efficiencies (PCEs), and solar and visible transmittance. However, it is not clear about the optimal configurations of semi-transparent solar cells for different types of buildings and climates. To tackle this problem, we conducted a parametric study on PV windows in a reference commercial building considering variables including PCE, solar transmittance, solar absorptance, U factor, daylighting control, window orientations, and climate types. Our model considers the thermal effects of PV windows, i.e., a load or grid connected PV window turns partial solar absorption into electricity instead of heat. The first finding, which differs from roof PVs, is that the vertical solar radiation on east and west facing windows is comparable to that on the south facing windows because the special 90° title angle results in more uniform POA irradiance in different orientations. It means the combination of PV windows in different orientations provide more stable power generation for the building. Results show that the PCE of PV windows dominates the energy saving despite other variables. The balance between solar transmittance and absorptance is also important for energy saving. Slightly higher visible transmittance (0.1) benefits the building energy saving when daylighting control is applied.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Paving the Way to Building-Integrated Translucent Tandem Photovoltaics: Process Optimization and Transfer to Perovskite-Perovskite 2-Terminal Tandem Cells A Silicon learning curve and polysilicon requirements for broad-electrification with photovoltaics by 2050 Effect of Metal Halides Treatment on High Throughput Low Temperature CIGS Solar Cells Three general methods for predicting bifacial photovoltaic performance including spectral albedo Diffraction-optimized surface structures for enhanced light harvesting in organic solar cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1