{"title":"多源网格网络统计分析的快速符号计算方法","authors":"Zhigang Hao, G. Shi","doi":"10.1109/ASPDAC.2010.5419852","DOIUrl":null,"url":null,"abstract":"Mesh circuits typically consist of many resistive links and many sources. Accurate analysis of massive mesh networks is demanding in the current integrated circuit design practice, yet their computation confronts numerous challenges. When variation is considered, mesh analysis becomes a much harder task. This paper proposes a symbolic computation technique that can be applied to the moment-based analysis of mesh networks with multiple sources. The variation issues are easily taken care of by a structured computation mechanism, which can naturally facilitate sensitivity based analysis. Applications are addressed by applying the computation technique to a set of mesh circuits with varying sizes.","PeriodicalId":152569,"journal":{"name":"2010 15th Asia and South Pacific Design Automation Conference (ASP-DAC)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"A fast symbolic computation approach to statistical analysis of mesh networks with multiple sources\",\"authors\":\"Zhigang Hao, G. Shi\",\"doi\":\"10.1109/ASPDAC.2010.5419852\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Mesh circuits typically consist of many resistive links and many sources. Accurate analysis of massive mesh networks is demanding in the current integrated circuit design practice, yet their computation confronts numerous challenges. When variation is considered, mesh analysis becomes a much harder task. This paper proposes a symbolic computation technique that can be applied to the moment-based analysis of mesh networks with multiple sources. The variation issues are easily taken care of by a structured computation mechanism, which can naturally facilitate sensitivity based analysis. Applications are addressed by applying the computation technique to a set of mesh circuits with varying sizes.\",\"PeriodicalId\":152569,\"journal\":{\"name\":\"2010 15th Asia and South Pacific Design Automation Conference (ASP-DAC)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 15th Asia and South Pacific Design Automation Conference (ASP-DAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASPDAC.2010.5419852\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 15th Asia and South Pacific Design Automation Conference (ASP-DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASPDAC.2010.5419852","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A fast symbolic computation approach to statistical analysis of mesh networks with multiple sources
Mesh circuits typically consist of many resistive links and many sources. Accurate analysis of massive mesh networks is demanding in the current integrated circuit design practice, yet their computation confronts numerous challenges. When variation is considered, mesh analysis becomes a much harder task. This paper proposes a symbolic computation technique that can be applied to the moment-based analysis of mesh networks with multiple sources. The variation issues are easily taken care of by a structured computation mechanism, which can naturally facilitate sensitivity based analysis. Applications are addressed by applying the computation technique to a set of mesh circuits with varying sizes.