Mino Kim, Woo-Yeol Shin, Gi-Moon Hong, Jihwan Park, Joo-Hyung Chae, Nan Xing, J. Woo, Suhwan Kim
{"title":"具有多相循环游标延迟线的高分辨率和宽动态范围时间-数字转换器","authors":"Mino Kim, Woo-Yeol Shin, Gi-Moon Hong, Jihwan Park, Joo-Hyung Chae, Nan Xing, J. Woo, Suhwan Kim","doi":"10.1109/ESSCIRC.2013.6649135","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a time-to-digital converter (TDC) that uses a multi-phase cyclic Vernier delay line (VDL) to achieve the high-resolution and wide-dynamic range. Its control voltages are provided by two phase-locked loops (PLLs) to compensate for the process and ambient variations. The two PLLs share a single reference clock and have different frequency-division ratios. It also improves the resolution of the TDC. A prototype chip, designed and fabricated in 0.18μm CMOS technology with an active area of 0.40mm2, achieves a 3.4ps of resolution and an input range of 100ns at 2.5M samples/s, while consuming 32mW from a 1.8V supply.","PeriodicalId":183620,"journal":{"name":"2013 Proceedings of the ESSCIRC (ESSCIRC)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"High-resolution and wide-dynamic range time-to-digital converter with a multi-phase cyclic Vernier delay line\",\"authors\":\"Mino Kim, Woo-Yeol Shin, Gi-Moon Hong, Jihwan Park, Joo-Hyung Chae, Nan Xing, J. Woo, Suhwan Kim\",\"doi\":\"10.1109/ESSCIRC.2013.6649135\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a time-to-digital converter (TDC) that uses a multi-phase cyclic Vernier delay line (VDL) to achieve the high-resolution and wide-dynamic range. Its control voltages are provided by two phase-locked loops (PLLs) to compensate for the process and ambient variations. The two PLLs share a single reference clock and have different frequency-division ratios. It also improves the resolution of the TDC. A prototype chip, designed and fabricated in 0.18μm CMOS technology with an active area of 0.40mm2, achieves a 3.4ps of resolution and an input range of 100ns at 2.5M samples/s, while consuming 32mW from a 1.8V supply.\",\"PeriodicalId\":183620,\"journal\":{\"name\":\"2013 Proceedings of the ESSCIRC (ESSCIRC)\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 Proceedings of the ESSCIRC (ESSCIRC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ESSCIRC.2013.6649135\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 Proceedings of the ESSCIRC (ESSCIRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESSCIRC.2013.6649135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
High-resolution and wide-dynamic range time-to-digital converter with a multi-phase cyclic Vernier delay line
In this paper, we propose a time-to-digital converter (TDC) that uses a multi-phase cyclic Vernier delay line (VDL) to achieve the high-resolution and wide-dynamic range. Its control voltages are provided by two phase-locked loops (PLLs) to compensate for the process and ambient variations. The two PLLs share a single reference clock and have different frequency-division ratios. It also improves the resolution of the TDC. A prototype chip, designed and fabricated in 0.18μm CMOS technology with an active area of 0.40mm2, achieves a 3.4ps of resolution and an input range of 100ns at 2.5M samples/s, while consuming 32mW from a 1.8V supply.