kartini反应堆燃料板的计算流体动力学模拟

T. H. Susanto
{"title":"kartini反应堆燃料板的计算流体动力学模拟","authors":"T. H. Susanto","doi":"10.24246/IJPNA.V4I2.33-38","DOIUrl":null,"url":null,"abstract":"The purpose of this study is to determine the characteristics of the cooling system on the new design of the Kartini Reactor plate fuel based on numerical calculations (Computational Fluid Dynamics). The fuel plate model was simplified and made in 3D. The model dimensions are 17.3 mm x 68 mm x 900 mm. The space between the two plates called the narrow rectangular channels has a gap of 2 mm. On these simulations a heat flux of 10612,7 watt/m2 was used which was obtained from the MCNP calculation program. Simulations were conducted in a steady state condition and single-phase model laminar flow of an incompressible fluid through the gap between the two fuel plates. This simulation uses UDF (User Define Function) to approach heat flux behaviour that follows the neutron distribution in the reactor core. The simulation results show that the maximum temperature that occur at a flow rate of 0.01 m/s was 43.5 °C.","PeriodicalId":383123,"journal":{"name":"Indonesian Journal of Physics and Nuclear Applications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"COMPUTATIONAL FLUID DYNAMICS SIMULATION OF KARTINI REACTOR FUELED PLATE\",\"authors\":\"T. H. Susanto\",\"doi\":\"10.24246/IJPNA.V4I2.33-38\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of this study is to determine the characteristics of the cooling system on the new design of the Kartini Reactor plate fuel based on numerical calculations (Computational Fluid Dynamics). The fuel plate model was simplified and made in 3D. The model dimensions are 17.3 mm x 68 mm x 900 mm. The space between the two plates called the narrow rectangular channels has a gap of 2 mm. On these simulations a heat flux of 10612,7 watt/m2 was used which was obtained from the MCNP calculation program. Simulations were conducted in a steady state condition and single-phase model laminar flow of an incompressible fluid through the gap between the two fuel plates. This simulation uses UDF (User Define Function) to approach heat flux behaviour that follows the neutron distribution in the reactor core. The simulation results show that the maximum temperature that occur at a flow rate of 0.01 m/s was 43.5 °C.\",\"PeriodicalId\":383123,\"journal\":{\"name\":\"Indonesian Journal of Physics and Nuclear Applications\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indonesian Journal of Physics and Nuclear Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.24246/IJPNA.V4I2.33-38\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indonesian Journal of Physics and Nuclear Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24246/IJPNA.V4I2.33-38","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究的目的是基于数值计算(计算流体动力学)确定新设计的Kartini堆板燃料冷却系统的特性。对燃料板模型进行了简化和三维制作。模型尺寸为17.3毫米× 68毫米× 900毫米。两块板之间的空间称为窄矩形通道,有2毫米的间隙。在这些模拟中,热流密度为10612,7瓦特/m2,这是由MCNP计算程序获得的。在稳态条件下和不可压缩流体通过两燃料板间隙的单相层流模型下进行了模拟。该模拟使用UDF(用户定义函数)来接近反应堆堆芯中跟随中子分布的热流通量行为。仿真结果表明,在流速为0.01 m/s时,最高温度为43.5℃。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
COMPUTATIONAL FLUID DYNAMICS SIMULATION OF KARTINI REACTOR FUELED PLATE
The purpose of this study is to determine the characteristics of the cooling system on the new design of the Kartini Reactor plate fuel based on numerical calculations (Computational Fluid Dynamics). The fuel plate model was simplified and made in 3D. The model dimensions are 17.3 mm x 68 mm x 900 mm. The space between the two plates called the narrow rectangular channels has a gap of 2 mm. On these simulations a heat flux of 10612,7 watt/m2 was used which was obtained from the MCNP calculation program. Simulations were conducted in a steady state condition and single-phase model laminar flow of an incompressible fluid through the gap between the two fuel plates. This simulation uses UDF (User Define Function) to approach heat flux behaviour that follows the neutron distribution in the reactor core. The simulation results show that the maximum temperature that occur at a flow rate of 0.01 m/s was 43.5 °C.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
GAMMA RADIATION ANALYSIS ON IN VIVO/ IN VITRO TESTING FACILITY BORON NEUTRON CAPTURE THERAPY The Role of Radiologic Technology in Enforcing Diagnosis of Covid-19 Disease: Case Report at RSPAW Salatiga Distribution of Water Phantom BNCT Cyclotron based Using PHITS FACTORS AFFECTING INFANT MORTALITY RATE IN KARANGASEM, BALI Dose Analysis in Boron Neutron-capture Cancer Therapy (BNCT) Neutron Generator Based for Breast Cancer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1