{"title":"锗薄膜固-电解质界面层表面化学分析及碳酸乙烯电解质添加剂的影响","authors":"S. Jayasree, S. Nair, Dhamodaran Santhanagopalan","doi":"10.5772/intechopen.90032","DOIUrl":null,"url":null,"abstract":"Germanium thin-film anodes for Li-ion battery applications are the focus of the present work. As part of this chapter, we shall briefly review the use of germanium thin films in Li-ion batteries, and subsequently, new results pertaining to the effect of vinylene carbonate (VC) as electrolyte additive on the electrochemical performance are presented. We have used cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance spectroscopy to investigate the performance. Thin-film electrode performance with 0 wt. %, 5 wt. %, and 10 wt.% VC as electrolyte additive was compared to understand the role of additive’s concentration. The cell with 5 wt.% VC as electrolyte additive exhibited best performance with high specific capacity of 975 mAh/g, with a retention of 94 and 99% Coulombic efficiency at the end of 100 cycles. Ex situ surface chemical analysis of the solid-electrolyte interphase (SEI) layer has been studied in detail using X-ray photoelectron spectroscopy and correlated with the electrochemical performance. and non-doped. They prepared electrodes with different thickness of 50, 100, 200, and 400 nm. The n-doped Ge film of thickness 200 nm exhibited best life cycle among others. It showed a stable discharge capacity of 780 μ Ahcm 2 /cm over 180 cycles.","PeriodicalId":375639,"journal":{"name":"Lithium-ion Batteries - Thin Film for Energy Materials and Devices","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Surface Chemical Analysis of Solid-Electrolyte Interphase Layer on Germanium Thin Films and the Effect of Vinylene Carbonate Electrolyte Additive\",\"authors\":\"S. Jayasree, S. Nair, Dhamodaran Santhanagopalan\",\"doi\":\"10.5772/intechopen.90032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Germanium thin-film anodes for Li-ion battery applications are the focus of the present work. As part of this chapter, we shall briefly review the use of germanium thin films in Li-ion batteries, and subsequently, new results pertaining to the effect of vinylene carbonate (VC) as electrolyte additive on the electrochemical performance are presented. We have used cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance spectroscopy to investigate the performance. Thin-film electrode performance with 0 wt. %, 5 wt. %, and 10 wt.% VC as electrolyte additive was compared to understand the role of additive’s concentration. The cell with 5 wt.% VC as electrolyte additive exhibited best performance with high specific capacity of 975 mAh/g, with a retention of 94 and 99% Coulombic efficiency at the end of 100 cycles. Ex situ surface chemical analysis of the solid-electrolyte interphase (SEI) layer has been studied in detail using X-ray photoelectron spectroscopy and correlated with the electrochemical performance. and non-doped. They prepared electrodes with different thickness of 50, 100, 200, and 400 nm. The n-doped Ge film of thickness 200 nm exhibited best life cycle among others. It showed a stable discharge capacity of 780 μ Ahcm 2 /cm over 180 cycles.\",\"PeriodicalId\":375639,\"journal\":{\"name\":\"Lithium-ion Batteries - Thin Film for Energy Materials and Devices\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Lithium-ion Batteries - Thin Film for Energy Materials and Devices\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5772/intechopen.90032\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Lithium-ion Batteries - Thin Film for Energy Materials and Devices","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5772/intechopen.90032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Surface Chemical Analysis of Solid-Electrolyte Interphase Layer on Germanium Thin Films and the Effect of Vinylene Carbonate Electrolyte Additive
Germanium thin-film anodes for Li-ion battery applications are the focus of the present work. As part of this chapter, we shall briefly review the use of germanium thin films in Li-ion batteries, and subsequently, new results pertaining to the effect of vinylene carbonate (VC) as electrolyte additive on the electrochemical performance are presented. We have used cyclic voltammetry, galvanostatic charge-discharge and electrochemical impedance spectroscopy to investigate the performance. Thin-film electrode performance with 0 wt. %, 5 wt. %, and 10 wt.% VC as electrolyte additive was compared to understand the role of additive’s concentration. The cell with 5 wt.% VC as electrolyte additive exhibited best performance with high specific capacity of 975 mAh/g, with a retention of 94 and 99% Coulombic efficiency at the end of 100 cycles. Ex situ surface chemical analysis of the solid-electrolyte interphase (SEI) layer has been studied in detail using X-ray photoelectron spectroscopy and correlated with the electrochemical performance. and non-doped. They prepared electrodes with different thickness of 50, 100, 200, and 400 nm. The n-doped Ge film of thickness 200 nm exhibited best life cycle among others. It showed a stable discharge capacity of 780 μ Ahcm 2 /cm over 180 cycles.