流行病学数据的分类:遗传算法和决策树方法的比较

C. Congdon
{"title":"流行病学数据的分类:遗传算法和决策树方法的比较","authors":"C. Congdon","doi":"10.1109/CEC.2000.870330","DOIUrl":null,"url":null,"abstract":"Describes an application of genetic algorithms (GAs) to classify epidemiological data, which is often challenging to classify due to noise and other factors. For such complex data (that requires a large number of very specific rules in order to achieve high accuracy), smaller rule sets, composed of more general rules, may be preferable, even if they are less accurate. The GA presented in this paper allows the user to encourage smaller rule sets by setting a parameter. The rule sets found are also compared to those created by standard decision-tree algorithms. The results illustrate tradeoffs involving the number of rules, descriptive accuracy, predictive accuracy, and accuracy in describing and predicting positive examples across different rule sets.","PeriodicalId":218136,"journal":{"name":"Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Classification of epidemiological data: a comparison of genetic algorithm and decision tree approaches\",\"authors\":\"C. Congdon\",\"doi\":\"10.1109/CEC.2000.870330\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Describes an application of genetic algorithms (GAs) to classify epidemiological data, which is often challenging to classify due to noise and other factors. For such complex data (that requires a large number of very specific rules in order to achieve high accuracy), smaller rule sets, composed of more general rules, may be preferable, even if they are less accurate. The GA presented in this paper allows the user to encourage smaller rule sets by setting a parameter. The rule sets found are also compared to those created by standard decision-tree algorithms. The results illustrate tradeoffs involving the number of rules, descriptive accuracy, predictive accuracy, and accuracy in describing and predicting positive examples across different rule sets.\",\"PeriodicalId\":218136,\"journal\":{\"name\":\"Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512)\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CEC.2000.870330\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2000 Congress on Evolutionary Computation. CEC00 (Cat. No.00TH8512)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2000.870330","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

描述了遗传算法(GAs)在流行病学数据分类中的应用,由于噪声和其他因素,这些数据通常具有挑战性。对于如此复杂的数据(需要大量非常具体的规则来实现高准确性),由更一般的规则组成的较小的规则集可能更可取,即使它们不太准确。本文提出的遗传算法允许用户通过设置参数来鼓励更小的规则集。还将找到的规则集与标准决策树算法创建的规则集进行比较。结果说明了涉及规则数量、描述准确性、预测准确性以及跨不同规则集描述和预测正例的准确性的权衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Classification of epidemiological data: a comparison of genetic algorithm and decision tree approaches
Describes an application of genetic algorithms (GAs) to classify epidemiological data, which is often challenging to classify due to noise and other factors. For such complex data (that requires a large number of very specific rules in order to achieve high accuracy), smaller rule sets, composed of more general rules, may be preferable, even if they are less accurate. The GA presented in this paper allows the user to encourage smaller rule sets by setting a parameter. The rule sets found are also compared to those created by standard decision-tree algorithms. The results illustrate tradeoffs involving the number of rules, descriptive accuracy, predictive accuracy, and accuracy in describing and predicting positive examples across different rule sets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Test-case generator TCG-2 for nonlinear parameter optimisation Accelerating multi-objective control system design using a neuro-genetic approach On the use of stochastic estimator learning automata for dynamic channel allocation in broadcast networks A hierarchical distributed genetic algorithm for image segmentation Genetic learning of multi-attribute interactions in speaker verification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1