基于Vivado HLS的嵌入式系统硬件加速姿态估计

J. Joseph, Tobias Winker, Kristian Ehlers, Christopher Blochwitz, Thilo Pionteck
{"title":"基于Vivado HLS的嵌入式系统硬件加速姿态估计","authors":"J. Joseph, Tobias Winker, Kristian Ehlers, Christopher Blochwitz, Thilo Pionteck","doi":"10.1109/ReConFig.2016.7857173","DOIUrl":null,"url":null,"abstract":"The focus of this work is to facilitate pose estimation and, thus, gesture recognition for embedded systems, although these are tasks with high computational performance requirements. Therefore, an existing pose estimation algorithm is optimized for Xilinx High Level Synthesis (HLS). The resulting hardware acceleration cores are compared for different optimizations and, finally, we propose a hardware/software system design for a Xilinx Zynq Zedboard. Using this method, we achieve a speedup of 1.6 in comparison to a software solution on the ARM processor and, thus, facilitate hand tracking for embedded systems with low power consumption.","PeriodicalId":431909,"journal":{"name":"2016 International Conference on ReConFigurable Computing and FPGAs (ReConFig)","volume":"75 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Hardware-accelerated pose estimation for embedded systems using Vivado HLS\",\"authors\":\"J. Joseph, Tobias Winker, Kristian Ehlers, Christopher Blochwitz, Thilo Pionteck\",\"doi\":\"10.1109/ReConFig.2016.7857173\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The focus of this work is to facilitate pose estimation and, thus, gesture recognition for embedded systems, although these are tasks with high computational performance requirements. Therefore, an existing pose estimation algorithm is optimized for Xilinx High Level Synthesis (HLS). The resulting hardware acceleration cores are compared for different optimizations and, finally, we propose a hardware/software system design for a Xilinx Zynq Zedboard. Using this method, we achieve a speedup of 1.6 in comparison to a software solution on the ARM processor and, thus, facilitate hand tracking for embedded systems with low power consumption.\",\"PeriodicalId\":431909,\"journal\":{\"name\":\"2016 International Conference on ReConFigurable Computing and FPGAs (ReConFig)\",\"volume\":\"75 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 International Conference on ReConFigurable Computing and FPGAs (ReConFig)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ReConFig.2016.7857173\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on ReConFigurable Computing and FPGAs (ReConFig)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ReConFig.2016.7857173","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

这项工作的重点是促进姿态估计,从而促进嵌入式系统的手势识别,尽管这些任务具有很高的计算性能要求。因此,针对Xilinx High Level Synthesis (HLS),对现有的姿态估计算法进行了优化。最后,我们提出了Xilinx Zynq Zedboard的硬件/软件系统设计方案。使用这种方法,与ARM处理器上的软件解决方案相比,我们实现了1.6的加速,从而促进了低功耗嵌入式系统的手部跟踪。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Hardware-accelerated pose estimation for embedded systems using Vivado HLS
The focus of this work is to facilitate pose estimation and, thus, gesture recognition for embedded systems, although these are tasks with high computational performance requirements. Therefore, an existing pose estimation algorithm is optimized for Xilinx High Level Synthesis (HLS). The resulting hardware acceleration cores are compared for different optimizations and, finally, we propose a hardware/software system design for a Xilinx Zynq Zedboard. Using this method, we achieve a speedup of 1.6 in comparison to a software solution on the ARM processor and, thus, facilitate hand tracking for embedded systems with low power consumption.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimal processor interface for CGRA-based accelerators implemented on FPGAs Automatic framework to generate reconfigurable accelerators for option pricing applications Hobbit — Smaller but faster than a dwarf: Revisiting lightweight SHA-3 FPGA implementations FPGA implementation of optimized XBM specifications by transformation for AFSMs Data-rate-aware FPGA-based acceleration framework for streaming applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1