{"title":"生物膜中的离子通道:用漂移-扩散方程描述的天然纳米管","authors":"B. Eisenberg","doi":"10.1109/IWCE.1998.742714","DOIUrl":null,"url":null,"abstract":"Ionic channels are proteins with a hole down their middle, natural nanotubes of great biological importance because they regulate many activities of cells in health and disease. Ionic channels have simple structure and obey the familiar drift-diffusion equations of semiconductor physics. It seems likely that higher resolution theories of computational electronics (e.g., Monte Carlo simulations) will reveal even more about how channels, and perhaps other proteins, function. Thus, the study of channels is a promising area for interdisciplinary investigation.","PeriodicalId":357304,"journal":{"name":"1998 Sixth International Workshop on Computational Electronics. Extended Abstracts (Cat. No.98EX116)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Ionic channels in biological membranes: natural nanotubes described by the drift-diffusion equations\",\"authors\":\"B. Eisenberg\",\"doi\":\"10.1109/IWCE.1998.742714\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ionic channels are proteins with a hole down their middle, natural nanotubes of great biological importance because they regulate many activities of cells in health and disease. Ionic channels have simple structure and obey the familiar drift-diffusion equations of semiconductor physics. It seems likely that higher resolution theories of computational electronics (e.g., Monte Carlo simulations) will reveal even more about how channels, and perhaps other proteins, function. Thus, the study of channels is a promising area for interdisciplinary investigation.\",\"PeriodicalId\":357304,\"journal\":{\"name\":\"1998 Sixth International Workshop on Computational Electronics. Extended Abstracts (Cat. No.98EX116)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1998-10-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1998 Sixth International Workshop on Computational Electronics. Extended Abstracts (Cat. No.98EX116)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWCE.1998.742714\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1998 Sixth International Workshop on Computational Electronics. Extended Abstracts (Cat. No.98EX116)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWCE.1998.742714","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Ionic channels in biological membranes: natural nanotubes described by the drift-diffusion equations
Ionic channels are proteins with a hole down their middle, natural nanotubes of great biological importance because they regulate many activities of cells in health and disease. Ionic channels have simple structure and obey the familiar drift-diffusion equations of semiconductor physics. It seems likely that higher resolution theories of computational electronics (e.g., Monte Carlo simulations) will reveal even more about how channels, and perhaps other proteins, function. Thus, the study of channels is a promising area for interdisciplinary investigation.