利用惯性传感器改进基于视觉的无人潜航器障碍物检测

Borja Bovcon, Rok Mandeljc, J. Pers, M. Kristan
{"title":"利用惯性传感器改进基于视觉的无人潜航器障碍物检测","authors":"Borja Bovcon, Rok Mandeljc, J. Pers, M. Kristan","doi":"10.1109/ISPA.2017.8073559","DOIUrl":null,"url":null,"abstract":"We present a new semantic segmentation algorithm for obstacle detection in unmanned surface vehicles. The novelty lies in the graphical model that incorporates boat tilt measurements from the on-board inertial measurement unit (IMU). The IMU readings are used to estimate the location of horizon line in the image, and automatically adjusts the priors in the probabilistic semantic segmentation algorithm. We derive the necessary horizon projection equations, an efficient optimization algorithm for the proposed graphical model, and a practical IMU-camera-USV calibration. A new challenging dataset, which is the largest multi-sensor dataset of its kind, is constructed. Results show that the proposed algorithm significantly outperforms state of the art, with 32% improvement in water-edge detection accuracy, an over 15 % reduction of false positive rate, an over 70 % reduction of false negative rate, and an over 55 % increase of true positive rate, while running in real-time on a single core in Matlab.","PeriodicalId":117602,"journal":{"name":"Proceedings of the 10th International Symposium on Image and Signal Processing and Analysis","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Improving vision-based obstacle detection on USV using inertial sensor\",\"authors\":\"Borja Bovcon, Rok Mandeljc, J. Pers, M. Kristan\",\"doi\":\"10.1109/ISPA.2017.8073559\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a new semantic segmentation algorithm for obstacle detection in unmanned surface vehicles. The novelty lies in the graphical model that incorporates boat tilt measurements from the on-board inertial measurement unit (IMU). The IMU readings are used to estimate the location of horizon line in the image, and automatically adjusts the priors in the probabilistic semantic segmentation algorithm. We derive the necessary horizon projection equations, an efficient optimization algorithm for the proposed graphical model, and a practical IMU-camera-USV calibration. A new challenging dataset, which is the largest multi-sensor dataset of its kind, is constructed. Results show that the proposed algorithm significantly outperforms state of the art, with 32% improvement in water-edge detection accuracy, an over 15 % reduction of false positive rate, an over 70 % reduction of false negative rate, and an over 55 % increase of true positive rate, while running in real-time on a single core in Matlab.\",\"PeriodicalId\":117602,\"journal\":{\"name\":\"Proceedings of the 10th International Symposium on Image and Signal Processing and Analysis\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 10th International Symposium on Image and Signal Processing and Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISPA.2017.8073559\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 10th International Symposium on Image and Signal Processing and Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISPA.2017.8073559","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

提出了一种新的用于无人水面车辆障碍物检测的语义分割算法。新颖之处在于图形模型结合了船上惯性测量单元(IMU)的船倾斜测量。在概率语义分割算法中,IMU的读数用于估计图像中地平线的位置,并自动调整先验。我们推导了必要的水平投影方程,提出的图形模型的有效优化算法,以及一个实用的imu -相机- usv校准。构建了一个新的具有挑战性的数据集,这是同类数据集中最大的多传感器数据集。结果表明,该算法在Matlab中单核实时运行时,水边缘检测精度提高了32%,假阳性率降低了15%以上,假阴性率降低了70%以上,真阳性率提高了55%以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improving vision-based obstacle detection on USV using inertial sensor
We present a new semantic segmentation algorithm for obstacle detection in unmanned surface vehicles. The novelty lies in the graphical model that incorporates boat tilt measurements from the on-board inertial measurement unit (IMU). The IMU readings are used to estimate the location of horizon line in the image, and automatically adjusts the priors in the probabilistic semantic segmentation algorithm. We derive the necessary horizon projection equations, an efficient optimization algorithm for the proposed graphical model, and a practical IMU-camera-USV calibration. A new challenging dataset, which is the largest multi-sensor dataset of its kind, is constructed. Results show that the proposed algorithm significantly outperforms state of the art, with 32% improvement in water-edge detection accuracy, an over 15 % reduction of false positive rate, an over 70 % reduction of false negative rate, and an over 55 % increase of true positive rate, while running in real-time on a single core in Matlab.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Robust real-time chest compression rate detection from smartphone video Image registration with subpixel accuracy of DCT-sign phase correlation with real subpixel shifted images Choosing an accurate number of mel frequency cepstral coefficients for audio classification purpose Blind determination of quality of JPEG compressed images Differentiating ureter and arteries in the pelvic via endoscope using deep neural network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1